电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

求解二元一次方程组第课时教学设计VIP免费

求解二元一次方程组第课时教学设计_第1页
1/7
求解二元一次方程组第课时教学设计_第2页
2/7
求解二元一次方程组第课时教学设计_第3页
3/7
第五章二元一次方程组2.求解二元一次方程组(第2课时)为此,本节课的教学目标是:(1)会用加减消元法解二元一次方程组.(2)进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.(3)选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.本节课的教学重点是:用加减消元法解二元一次方程组.本节课的教学难点是:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.三、教学过程设计第一环节:导学内容:巩固练习,在练习中发现新的解决方法怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)第二环节:自学学生可能的解答方案1:解1:把②变形,得:,③把③代入①,得:,解得:.把代入②,得:.所以方程组的解为.学生可能的解答方案2:解2:由②得,③把当做整体将③代入①,得:,解得:.把代入③,得:.所以方程组的解为.(此种解法体现了整体的思想)学生可能的解答方案3:(观察发现:两个方程中一个含有,而另一个是,两者互为相反数)解3:根据等式的基本性质方程①+方程②得:,解得:,把代入①,解得:,所以方程组的解为.通过上面的练习发现,同学们对代入消元法都掌握得很好了,基本上都能够按要求解出二元一次方程组的解(如方案1),可是也有同学发现(方案2)的解法比(方案1)的解法简单,他是将5y作为一个整体代入消元,依然体现了代入法的核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗?(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x的系数或y的系数)引导学生发现方程①和②中的和互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.第三环节:助学内容1:(教师板书课题)下面我们就用刚才的方法解下面的二元一次方程组.(教师规范表达解答过程,为学生作出示范)例1解下列二元一次方程组(若学生先前的环节接受得好,可以让学生独立完成,教师再跟进讲授)(1)分析:观察到方程①、②中未知数x的系数相等,可以利用两个方程相减消去未知数x.解:②-①,得:,解得:,把代入①,得:,解得:,所以方程组的解为.(解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点:(1)注意解此题的易错点是②-①时是,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x,不过在①-②得到的方程中,y的系数是负数,所以在上面的解法中选择②-①;(2)把代入①或②,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.内容2:过手训练:用加减消元法解下列方程组:①②(1),(2).师生一起分析上面的解答过程,归纳出下面的一些规律:在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法)内容3:例2解方程组(先留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?如学生提出用代入消元法,可以让学生先按此法完成,然后再问能不能用刚学过的加减消元法解决?让学生讨论尝试,学生可能得到的结论如下)1.对于用加减消元法解,x、y的系数既不相同也不是相反数,没有办法用加减消元法.2.是不是可以这样想,将方程组中的方程用等式的基本性质将这个方程组中的x或y的系数化成相等(或互为相反数)的情形,再用加减消元法达到消元的目的.3....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

求解二元一次方程组第课时教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部