电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数的概念补充练习VIP免费

函数的概念补充练习_第1页
1/3
函数的概念补充练习_第2页
2/3
函数的概念补充练习_第3页
3/3
变式训练1.已知a、bN∈*,f(a+b)=f(a)f(b),f(1)=2,则=_________.分析:令a=x,b=1(x∈N*),则有f(x+1)=f(x)f(1)=2f(x),即有=2(x∈N*).所以,原式==4012.答案:40122.2007山东蓬莱一模,理13设函数f(n)=k(k∈N*),k是π的小数点后的第n位数字,π=3.1415926535…,则等于________.分析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,则有=1.答案:12.2007山东济宁二模,理10已知A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,则这样的函数f(x)有()A.4个B.6个C.7个D.8个活动:学生思考函数的概念,什么是不同的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f(a),f(b),f(c)的值分类讨论,注意要满足f(a)+f(b)+f(c)=0.解:当f(a)=-1时,则f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件的函数有2个;当f(a)=0时,则f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件的函数有3个;当f(a)=1时,则f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件的函数有2个.综上所得,满足条件的函数共有2+3+2=7(个).故选C.点评:本题主要考查对函数概念的理解,用集合的观点来看待函数.变式训练若一系列函数的解析式相同,值域相同,但是定义域不同,则称这些函数为“同族函数”.那么解析式为y=x2,值域是{1,4}的“同族函数”共有()A.9个B.8个C.5个D.4个分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数.令x2=1,得x=±1;令x2=4,得x=±2.所有“同族函数”的定义域分别是{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2},{-1,-2,2},{1,-1,-2,2},则“同族函数”共有9个.答案:A知能训练1.2007学年度山东淄博高三第二次摸底考试,理16已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则=______.解:∵f(p+q)=f(p)f(q),∴f(x+x)=f(x)f(x),即f2(x)=f(2x).令q=1,得f(p+1)=f(p)f(1),∴=f(1)=3.∴原式==2(3+3+3+3+3)=30.答案:302.2006第十七届“希望杯”全国数学邀请赛(高一)第一试,2若f(x)=的定义域为A,g(x)=f(x+1)-f(x)的定义域为B,那么()A.AB=B∪B.ABC.ABD.A∩B=分析:由题意得A={x|x≠0},B={x|x≠0,且x≠-1}.则AB=A,∪则A错;A∩B=B,则D错;由于BA,则C错,B正确.答案:B拓展提升问题:已知函数f(x)=x2+1,x∈R.(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.(2)由(1)你发现了什么结论?并加以证明.活动:让学生探求f(x)-f(-x)的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:由题意得f(-x)=(-x)2+1=x2+1=f(x).∴对任意x∈R,总有f(x)=f(-x).备选例题【例1】已知函数f(x)=,则函数f[f(x)]的定义域是.解:∵f(x)=,∴x≠-1.∴f[f(x)]=f()=.1+∴≠0,即≠0.∴x≠-2.∴f(x)的定义域为{x|x≠-2且x≠-1}.答案:{x|x≠-2且x≠-1}【例2】已知函数f(2x+3)的定义域是[-4,5),求函数f(2x-3)的定义域.解:由函数f(2x+3)的定义域得函数f(x)的定义域,从而求得函数f(2x-3)的定义域.设2x+3=t,当x∈[-4,5)时,有t∈[-5,13),则函数f(t)的定义域是[-5,13),解不等式-5≤2x-3<13,得-1≤x<8,即函数f(2x-3)的定义域是[-1,8).函数的传统定义和近代定义的比较函数的传统定义(初中学过的函数定义)与它的近代定义(用集合定义函数)在实质上是一致的.两个定义中的定义域和值域的意义完全相同;两个定义中的对应法则实际上也一样,只不过叙述的出发点不同.传统定义是从运动变化的观点出发,其中对应法则是将自变量x的每一个取值与唯一确定的函数值对应起来;近代定义则是从集合、对应的观点出发,其中的对应法则是将原象集合中任一元素与象集合中的唯一元素确定对应起来.至于函数的传统定义向近代定义过渡的原因,从历史上看,函数的传统定义来源于物理公式,最初的函数概念几乎等同于解析式,要说清楚变量以及两个变量的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了不必要的限制.后来,人们认识到了定义域和值域的重要性,如果只根据变量的观点来解析,会显得十分勉强,如:符号函数sgnx=用集合与对应的观点来解释,就显得十分自然了,用传统定义几乎无法解释,于是就有了函数的近代定义.由于传统的定义比较生动、直观,有时仍然会使用这一定义.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数的概念补充练习

您可能关注的文档

百万精品文档+ 关注
实名认证
内容提供者

中小学学习资料教案课件

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部