5.2平行关系的性质A组1.设a,b是两条直线,α,β是两个平面,若a∥α,a⫋β,α∩β=b,则平面α内与b相交的直线与a的位置关系是()A.平行B.相交C.异面D.平行或异面答案:C2.导学号62180038如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H两点,则HG与AB的位置关系是()A.平行B.相交C.异面D.不确定解析: E,F分别是AA1和BB1的中点,∴EF∥AB.又AB⊈平面EFGH,EF⫋平面EFGH,∴AB∥平面EFGH.又AB⫋平面ABCD,平面ABCD∩平面EFGH=GH,∴AB∥GH.答案:A3.设a,b表示直线,α,β,γ表示平面,则下列命题中不正确的是()A.α∥β,α∩γ=a,β∩γ=b⇒a∥bB.a∥b,b∥α,a⊈α⇒a∥αC.α∥β,β∥γ⇒α∥γD.α∥β,a∥α⇒a∥β解析:当α∥β,且a∥α时,可能有a∥β,也可能有a⫋β,因此选项D中的命题不正确.答案:D4.a是平面α外的一条直线,过a作平面β,使β∥α,这样的平面β()A.只能作一个B.至多可以作一个C.不存在D.至少可以作一个解析:因为a在平面α外,所以a∥α或a∩α=P.当a∥α时,过a可作唯一的平面β,使β∥α;当a∩α=P时,过a不能作平面β,使β∥α,故至多可以作一个.答案:B5.如图所示,P是△ABC所在平面外一点,平面α∥平面ABC,线段PA,PB,PC分别交α于A',B',C',若PA'∶AA'=2∶3,则△A'B'C'与△ABC面积的比为()A.2∶5B.3∶8C.4∶9D.4∶25解析:由题意知,△A'B'C'∽△ABC,从而.答案:D6.若α∥β,a⫋α,b⫋β,下列几种说法中正确的有.(只填序号)①a∥b;②a与β内无数条直线平行;③a与β内的唯一一条直线平行;④a∥β.答案:②④7.如图所示为长方体被一个平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为.解析:因为原来的几何体是长方体,所以平面ABFE∥平面DCGH,从而可得EF∥HG,同理可得HE∥GF,故EFGH是平行四边形.答案:平行四边形8.如图所示,P为▱ABCD所在平面外一点,E为AD的中点,F为PC上一点,当PA∥平面EBF时,=.解析:连接AC交BE于点G,连接FG.因为PA∥平面EBF,PA⫋平面PAC,平面PAC∩平面BEF=FG,所以PA∥FG,所以.又AD∥BC,E为AD的中点,所以,所以.答案:9.如图所示,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,M为OA的中点,N为BC的中点,求证:直线MN∥平面OCD.证明:取OB的中点G,连接GN,GM.在△OAB中,GM为中位线,∴GM∥AB.又AB∥CD,∴GM∥CD. GM⊈平面OCD,CD⫋平面OCD,∴GM∥平面OCD.在△OBC中,GN为中位线,∴GN∥OC. GN⊈平面OCD,OC⫋平面OCD,∴GN∥平面OCD. GM∩GN=G,∴平面GMN∥平面OCD. MN⫋平面GMN,MN⊈平面OCD,∴MN∥平面OCD.10.导学号62180039如图所示,在三棱柱ABC-A1B1C1中,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:(1)D为BC的中点;(2)平面A1BD1∥平面AC1D.证明:(1)连接A1C交AC1于点O,连接OD,则O为A1C的中点,因为A1B∥平面AC1D,A1B⫋平面CA1B,平面CA1B∩平面ADC1=OD,所以A1B∥OD.因为O为A1C的中点,所以D为BC的中点.(2)因为D1为B1C1的中点,由三棱柱的性质知,C1D1BD,所以四边形BDC1D1为平行四边形.所以BD1∥DC1.因为BD1⊈平面AC1D,C1D⫋平面AC1D,所以BD1∥平面AC1D.连接D1D,因为D1,D分别为B1C1,BC的中点,所以D1DB1B.因为B1BA1A,所以D1DA1A.所以四边形A1ADD1为平行四边形.所以A1D1∥AD.因为A1D1⊈平面AC1D,AD⫋平面AC1D,所以A1D1∥平面AC1D.因为A1D1∩BD1=D1,所以平面A1BD1∥平面AC1D.B组1.平面α截一个三棱锥,如果截面是梯形,则平面α必定和这个三棱锥的()A.底面平行B.一个侧面平行C.平行于两条相对的棱D.仅与一条棱平行解析:当平面α平行于某一个面时,截面为三角形,故A,B错.当SA∥平面α时,如图所示.SA⫋平面SAB,平面SAB∩平面α=DG,所以SA∥DG,同理SA∥EF,所以DG∥EF,同理若BC∥平面α时,得到GF∥DE.因为截面是梯形,所以只能有一条棱与之平行.答案:D2.导学号62180040已知平面α∥β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为()A.16B.24或C.14D.20解析:第①种情况,如图所示,当点P在α,β的同侧时,设BD=x,则PB=8-x,∴.∴BD=.第②种情况,如图所示,当点P在α,β中间时,设PB=x.∴.∴x==16,∴BD=24.答案:B3.过长方体ABCD-A1B1C1D1任意两条棱的中点作直...