2015年江苏省扬州市高考数学三模试卷一、填空题(共14小题,每小题6分,满分84分)1.设集合A={3,m},B={3m,3},且A=B,则实数m的值是.2.已知复数z=(1+i)(1﹣2i)(i为虚数单位),则z的实部为.3.已知实数x,y满足条件则z=2x+y的最小值是.4.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、实部的定义即可得出.解答:解:复数z=(1+i)(1﹣2i)=1﹣2i+i+2=3﹣i,∴z的实部为3.故答案为:3.点评:本题考查了复数的运算法则、实部的定义,属于基础题.3.已知实数x,y满足条件则z=2x+y的最小值是﹣3.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(﹣1,﹣1)时,直线在y轴上的截距最小,z有最小值为2×(﹣1)﹣1=﹣3.故答案为:﹣3.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在中,其频率分布直方图如图所示.已知在故答案为:﹣4点评:本题主要考查了程序框图和算法,属于基本知识的考查.6.从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的事件是从9个数字中任选一个有9种结果,满足条件的事件是对数log2x是一个正整数,可以列举x,有1,2,4,8,共有4种结果,根据概率公式得到结果解答:解:从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,共有9种基本事件,其中log2x为整数的x=1,2,4,8共4种基本事件,故则log2x为整数的概率为,故答案为:.点评:本题考查古典概型,考查对数的性质,是一个比较简单的综合题,解题的关键是看清楚有几个数字使得对数的值是一个正整数.7.在平面直角坐标系xOy中,点F为抛物线x2=8y的焦点,则F到双曲线的渐近线的距离为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和双曲线的渐近线方程,再由点到直线的距离公式计算即可得到所求值.解答:解:抛物线x2=8y的焦点F(0,2),双曲线的渐近线方程为y=±3x,则F到双曲线的渐近线的距离为d==.2故答案为:.点评:本题考查双曲线和抛物线的方程和性质,主要考查焦点和渐近线方程的求法,考查点到直线的距离公式的运用,属于基础题.8.在等差数列{an}中,若an+an+2=4n+6(n∈N*),则该数列的通项公式an=2n+1.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由已知条件易得数列的首项和公比,可得通项公式.解答:解:设等差数列{an}的公差为d, an+an+2=4n+6,①∴an+2+an+4=4(n+2)+6,②②﹣①可得an+4﹣an=8,即4d=8,解得d=2,把n=1代入an+an+2=4n+6可得2a1+4=10,解得a1=3,∴通项公式an=3+2(n﹣1)=2n+1故答案为:2n+1点评:本题考查等差数列的通项公式,求出数列的首项和公比是解决问题的关键,属基础题.9.给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为③.考点:命题的真假判断与应用.专题:简易逻辑.分析:①“a>b”“3⇔a>3b”,即可判断正误;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,即可判断出正误;③函数f(x)=x3+ax2(x∈R)为奇函数⇔f(﹣x)+f(x)=02ax⇔2=0,∀x∈R,⇔a=0.即可判断出正误.解答:解:①“a>b”“3⇔a>3b”,因此“a>b”是“3a>3b”的充要条件,故不正确;②取α=,β=,则cosα=cosβ;反之取α=,β=2π,满足cosα<cosβ,因此“α>β”是...