电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 解析几何初步 2.1.3 两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2-北师大版高一必修2数学试题VIP免费

高中数学 第二章 解析几何初步 2.1.3 两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2-北师大版高一必修2数学试题_第1页
1/7
高中数学 第二章 解析几何初步 2.1.3 两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2-北师大版高一必修2数学试题_第2页
2/7
高中数学 第二章 解析几何初步 2.1.3 两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2-北师大版高一必修2数学试题_第3页
3/7
1.3两条直线的位置关系课后篇巩固探究A组基础巩固1.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0解析设直线方程为x-2y+c=0(c≠-2),又经过(1,0),故c=-1,所求方程为x-2y-1=0.答案A2.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7B.0或7C.0D.4解析 直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或m=7,经检验都符合题意.故选B.答案B3.直线l1:kx+(1-k)y-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k的值为()A.-3或-1B.3或1C.-3或1D.-1或3解析若1-k=0,即k=1,直线l1:x=3,l2:y=25,显然两直线垂直.若k≠1,直线l1,l2的斜率分别为k1=kk-1,k2=1-k2k+3.由k1k2=-1,得k=-3.综上k=1或k=-3,故选C.答案C4.已知点A(1,2),B(3,1),线段AB的中点D(2,32),则线段AB的垂直平分线的方程是()A.4x+2y-5=0B.4x-2y-5=0C.x+2y-5=0D.x-2y-5=0解析因为kAB=2-11-3=-12,所以所求直线的斜率为2.又线段AB的中点D为(2,32),所以线段AB的垂直平分线方程为y-32=2(x-2),即4x-2y-5=0.答案B5.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)四点所组成的图形是()A.平行四边形B.直角梯形C.等腰梯形D.以上都不对解析由斜率公式可得kAB=kCD=13,而kAD=-3,kBC=-12.所以AB∥CD,且AD与BC不平行.所以四边形ABCD为梯形.又kAD·kAB=-1,所以AD⊥AB,所以四边形ABCD为直角梯形.答案B6.已知A(3,❑√3),B(2,0),直线l与AB平行,则直线l的倾斜角为.解析由已知得kAB=0-❑√32-3=❑√3,因此kl=kAB=❑√3.因为tan60°=❑√3,所以直线l的倾斜角为60°.答案60°7.已知点P(0,-1),点Q在直线x-y+1=0上,若直线PQ垂直于直线x+2y-5=0,则点Q的坐标是.解析依题意设点Q的坐标为(a,b),则有{a-b+1=0,b+1a·(-12)=-1,解得{a=2,b=3.故点Q的坐标为(2,3).答案(2,3)8.已知l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则下列说法正确的是(填序号).①若l1⊥l2,则A1A2+B1B2=0②若l1⊥l2,则A1A2B1B2=-1③若A1A2+B1B2=0,则l1⊥l2④若A1A2B1B2=-1,则l1⊥l2.解析当B1,B2均不为0时,由两条直线垂直可得-A1B1·(-A2B2)=-1,即A1A2+B1B2=0;当B1=0,A2=0或A1=0,B2=0时,两条直线也垂直,并满足A1A2+B1B2=0.由此可知①③④正确,②错.答案①③④9.(1)求与直线5x+3y-10=0平行且与x轴的交点到原点的距离为2的直线方程;(2)求经过点(0,2)且与直线l:2x-3y-3=0垂直的直线方程.解(1)设直线方程为5x+3y+m=0(m≠-10).因为直线与x轴的交点到原点的距离为2,且直线与x轴的交点为(-m5,0),所以|-m5|=2,解得m=±10.又因为m≠-10,所以m=10,所以直线方程为5x+3y+10=0.(2)因为所求直线与直线l:2x-3y-3=0垂直,所以可设所求直线的方程为3x+2y+m=0.又因为所求直线过点(0,2),所以4+m=0,解得m=-4,故所求直线的方程为3x+2y-4=0.10.导学号91134044已知A(1,-1),B(2,2),C(3,0)三点.(1)求点D,使直线CD⊥AB,且BC∥AD;(2)判断此时四边形ACBD的形状.解(1)如图,设D(x,y),则由CD⊥AB,BC∥AD,可知{kCD·kAB=-1,kCB=kAD,得{yx-3·2+12-1=-1,2-02-3=y+1x-1,解得{x=0,y=1,即点D坐标为(0,1).(2) kAC=0-(-1)3-1=12,kBD=2-12-0=12,∴kAC=kBD.∴AC∥BD,∴四边形ACBD为平行四边形.而kBC=2-02-3=-2,∴kBC·kAC=-1.∴AC⊥BC,∴四边形ACBD是矩形. DC⊥AB,∴四边形ACBD是正方形.B组能力提升1.若过点A(-2,2),B(5,0)的直线与过点P(2m,1),Q(-1,m)的直线平行,则m的值为()A.-1B.3C.2D.12解析由已知kAB=kPQ,得2-2-5=1-m2m+1,解得m=3,故选B.答案B2.已知直线l1:mx+4y-2=0与l2:2x-5y+n=0互相垂直且垂足为(1,p),则m-n+p的值为()A.24B.20C.0D.-8解析因为l1⊥l2,所以2m+4×(-5)=0,解得m=10,又点(1,p)在l1上,所以10+4p-2=0,即p=-2,因为点(1,p)在l2上,所以2×1-5p+n=0,得n=-12.所以m-n+p=10-(-12)+(-2)=20.答案B3.已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有()A.b=a3B.b=a3+1aC.(b-a3)(b-a3-1a)=0D.|b-a3|+|b-a3-1a|=0解析若△OAB为直角三角形,则∠A=90°或∠B=90°.当∠A=90°时,有b=a3;当∠B=90°时,有b-a30-a·a3-0a-0=-1,得b=a3+1a.故(b-a3)(b-a3-1a)=0,选C.答案C4.已知直线l的倾斜角为135°,直线l1经过点A(3,2),B(a,-1),且直线l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b=.解析依...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章 解析几何初步 2.1.3 两条直线的位置关系课后篇巩固探究(含解析)北师大版必修2-北师大版高一必修2数学试题

您可能关注的文档

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部