等比数列及其前n项和课时作业1.(2019·江西新余模拟)已知等比数列{an}中,a2=2,a6=8,则a3a4a5=()A.±64B.64C.32D.16答案B解析因为a2=2,a6=8,所以由等比数列的性质可知a2·a6=a=16,而a2,a4,a6同号,所以a4=4,所以a3a4a5=a=64.故选B.2.(2019·吉林调研)设等比数列{an}的前n项和为Sn,若a1=3,a4=24,则S6=()A.93B.189C.99D.195答案B解析 a4=a1q3=3q3=24,∴q=2,∴S6==189.故选B.3.(2019·太原模拟)等比数列{an}的前n项和为Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sm=15,则m为()A.12B.14C.15D.16答案D解析=q4=2,由a1+a2+a3+a4=1,得a1·=1,∴a1=q-1,又Sm=15,即=15,∴qm=16, q4=2,∴m=16.故选D.4.(2019·厦门模拟)设等比数列{an}的前n项和为Sn,若Sn=2n+1+λ,则λ=()A.-2B.-1C.1D.2答案A解析依题意,a1=S1=4+λ,a2=S2-S1=4,a3=S3-S2=8,因为{an}是等比数列,所以a=a1·a3,所以8(4+λ)=42,解得λ=-2.故选A.5.(2020·昆明一中模考)已知数列{an}是递减的等比数列,Sn是{an}的前n项和,若a2+a5=18,a3a4=32,则S5的值是()A.62B.48C.36D.31答案A解析由a2+a5=18,a3a4=32,得a2=16,a5=2或a2=2,a5=16(不符合题意,舍去),设数列{an}的公比为q,则a1=32,q=,所以S5==62,选A.6.(2019·长沙一模)设首项为1,公比为的等比数列{an}的前n项和为Sn,则()A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an答案D解析因为a1=1,公比q=,所以an=n-1,Sn==3=3-2n-1=3-2an,故选D.7.(2019·山西临汾模拟)设a1=2,数列{1+2an}是公比为2的等比数列,则a6=()A.31.5B.160C.79.5D.159.5答案C解析因为1+2an=(1+2a1)·2n-1,则an=,an=5·2n-2-.a6=5×24-=5×16-=80-=79.5.8.(2019·江西九校联考)在等比数列{an}中,若a2a5=-,a2+a3+a4+a5=,则+++=()A.1B.-C.-D.答案C解析因为数列{an}是等比数列,a2a5=-=a3a4,a2+a3+a4+a5=,所以+++=+==-.故选C.9.(2019·昆明模拟)设Sn是等比数列{an}的前n项和,若=3,则=()A.2B.C.D.1或2答案B解析设S2=k,S4=3k,由数列{an}为等比数列,得S2,S4-S2,S6-S4为等比数列,∴S2=k,S4-S2=2k,S6-S4=4k,∴S6=7k,∴==.故选B.10.(2020·延庆模拟)等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=()A.n(n+1)B.n(n-1)C.D.答案A解析设等差数列{an}的公差为d, a2,a4,a8成等比数列,∴a=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2,∴Sn=2n+=n(n+1).故选A.11.设等比数列{an}的前n项和为Sn,若a8=2a4,S4=4,则S8的值为()A.4B.8C.10D.12答案D解析设等比数列{an}的公比为q,由题意知q≠1.因为a8=2a4,S4=4,所以解得q4=2,a1=-4(1-q),所以S8===12.故选D.12.记等比数列{an}的前n项积为Tn(n∈N*),已知am-1·am+1-2am=0,且T2m-1=128,则m的值为()A.4B.7C.10D.12答案A解析因为{an}是等比数列,所以am-1am+1=a.又am-1am+1-2am=0,则a-2am=0,所以am=2.由等比数列的性质可知前2m-1项积T2m-1=a,即22m-1=128,故m=4.故选A.13.等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=________.答案-2解析S3+3S2=0,即a1+a2+a3+3(a1+a2)=0,即4a1+4a2+a3=0,即4a1+4a1q+a1q2=0,即q2+4q+4=0,所以q=-2.14.(2019·福州模拟)设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+3,则S4=________.答案66解析依题意有an=2Sn-1+3(n≥2),与原式作差,得an+1-an=2an,n≥2,即an+1=3an,n≥2,可见,数列{an}从第二项起是公比为3的等比数列,a2=5,所以S4=1+=66.15.已知等比数列{an}为递增数列,且a=a10,2(an+an+2)=5an+1,则数列{an}的通项公式为an=________.答案2n解析设等比数列{an}的公比为q. a=a10,∴(a1q4)2=a1q9,∴a1=q,∴an=qn. 2(an+an+2)=5an+1,∴2an(1+q2)=5anq,∴2(1+q2)=5q,解得q=2或q=(舍...