电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学排列、组合应用题解法技巧湘教版选修2-3VIP免费

高二数学排列、组合应用题解法技巧湘教版选修2-3_第1页
1/10
高二数学排列、组合应用题解法技巧湘教版选修2-3_第2页
2/10
高二数学排列、组合应用题解法技巧湘教版选修2-3_第3页
3/10
解排列组合应用题的解法·技巧引言:1、本资料对排列、组合应用题归纳为8种解法、13种技巧2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。弄清要完成什么样的事件是前提,解决这类问题通常有三种途径新疆王新敞特级教师源源源源源源http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/源源源源源源特级教师王新敞新疆(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆即采用“先特殊后一般”的解题原则.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆前两种方式叫直接解法,后一种方式叫间接(剔除)解法新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆注:数量不大时可以逐一排出结果。3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。下面通过一些例题来说明几种常见的解法。一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五.排除法六.机会均等法七.转化法八.隔板法一.运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。例1:n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有Cn0种结果;1个人通过,有Cn1种结果,……;n个人通过,有Cnn种结果。所以一共有CCCnnnnn012种可能的结果。解法2:用分步记数的原理。第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。所以一共有2n种可能的结果。例2:同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种解:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a、b、c、d。第一步,甲取其中一张,有3种等同的方式;第二步,假设甲取b,则乙的取法可分两类:(1)乙取a,则接下来丙、丁的取法都是唯一的,(2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。根据加法原理和乘法原理,一共有3129()种分配方式。二.特殊元素(位置)优先----(优待法)所谓“优待法”是指在解决排列组合问题时,对于有限制条件的元素(或位置)要优先考虑.用心爱心专心115号编辑例3:从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?解:个位选0,有P94个,个位不选0且万位不能选0,有CCP418183个,所以一共可以得到个偶数。注0,2,4,6,8是特殊元素,元素0更为特殊,首位与末位是特殊的位置。例4:8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?解:先排甲,有P41种排法。再排乙,有P51种排法,再排其余的人,又有P66种排法,所以一共有PPP41516614400种排法。【eg】在由数字0、1、2、3、4、5所组...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高二数学排列、组合应用题解法技巧湘教版选修2-3

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部