课时跟踪检测(五)函数的单调性与最值一、选择题1.(2014·北京高考)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x-1)2C.y=2-xD.y=log0.5(x+1)2.函数f(x)=|x-2|x的单调减区间是()A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)3.(2015·黑龙江牡丹江月考)设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则()A.f0且f(x)在(1,+∞)上单调递减,求a的取值范围.12.已知定义在区间(0,+∞)上的函数f(x)满足f=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.答案1.选A显然y=是(0,+∞)上的增函数;y=(x-1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y=2-x=x在x∈R上是减函数;y=log0.5(x+1)在(-1,+∞)上是减函数,故选A.2.选A由于f(x)=|x-2|x=结合图象可知函数的单调减区间是[1,2].3.选B由题设知,当x<1时,f(x)单调递减,当x≥1时,f(x)单调递增,而x=1为对称轴,∴f=f=f=f,又<<<1,∴f>f>f,即f>f>f.4.选C由已知得当-2≤x≤1时,f(x)=x-2,当10.∵x1+x2<0,∴x1<-x2<0.由f(x)+f(-x)=0知f(x)为奇函数.又由f(x)在(-∞,0)上单调递增得,f(x1)1,即|x|<1,且x≠0.故-10,x1-x2<0,∴f(x1)0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].12.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f<0,即f(x1)-f(x2)<0,因此f(x1)