电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

化归思想的运用VIP免费

化归思想的运用_第1页
1/1
请您举出1例化归思想在数与代数中的运用!在中学数学中,化归不仅是一种重要的解题思想,也是一种最基本的思维策略。所谓的化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。总之,化归在数学解题中几乎无处不在,化归的基本功能是:生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗。说到底,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,使问题得以解决。这也是辩证唯物主义的基本观点。化归思想中数与物之间的转化例如:计算48×53+47×48机械地应用乘法分配律公式进行计算,学生不容易真正理解。将48这一数化归成物,即看到了相同的数48,想起了红富士苹果,以物红富士苹果代替数48,相同的数48是化归的对象,红富士苹果是实施化归的途径,于是48×53+47×48就转化成求53个苹果与47个苹果之和的问题是化归的目标。48×53+47×48=48×(53+47)=48×100=4800,得到问题的解决。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

化归思想的运用

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部