2017年高考数学基础突破——集合与函数4.函数的奇偶性与周期性【知识梳理】1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2.奇偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【基础考点突破】考点1.函数奇偶性的判断【例1】判断下列函数的奇偶性:(1)f(x)=xlg(x+);(2)f(x)=(1-x);(3)f(x)=(4)f(x)=.【归纳总结】判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.变式训练1.(1)下列函数为奇函数的是()A.y=B.y=|sinx|C.y=cosxD.y=ex-e-x(2)(2014·新课标全国Ⅰ卷)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点2.函数奇偶性的应用【例2】(1)(2015·山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)(2)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于()A.4B.3C.2D.1【归纳总结】(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)±f(x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于f(x)的方程,从而可得f(x)的值或解析式.变式训练2.(1)(2016·唐山模拟)已知f(x)=x+-1,f(a)=2,则f(-a)=()A.-4B.-2C.-1D.-3(2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则f(x)=________.考点3.函数的周期性及其应用【例3】f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2017).【归纳总结】(1)判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可,且周期为T.(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质.(3)函数周期性的三个常用结论:①若f(x+a)=-f(x),则T=2a,②若f(x+a)=,则T=2a,③若f(x+a)=-,则T=2a(a>0).变式训练3.(1)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2017)等于________.(2)已知f(x)是定义在R上的偶函数,并且f(x+2)=-,当2≤x≤3时,f(x)=x,则f(19.5)=______.考点4.函数性质的综合应用命题点1.函数奇偶性的应用【例4】(1)已知,且,那么等于________.(2)(2015·课标全国Ⅰ)若函数f(x)=xln(x+)为偶函数,则a=________.命题点2.单调性与奇偶性、周期性结合【例5】(1)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为()A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)(2)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增...