一.(8分)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为V,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f与m、n和v的关系。二.一个用电阻丝绕成的线圈,浸没在量热器所盛的油中,油的温度为0℃,当线圈两端加上一定电压后,油温渐渐上升,0℃时温度升高的速率为5.0K·min−1,持续一段时间后,油温上升到30℃,此时温度升高的速率为4.5K·min−1,这是因为线圈的电阻与温度有关。设温度为θ℃时线圈的电阻为Rθ,温度为0℃时线圈的电阻为R0,则有,α称为电阻的温度系数。试求此线圈电阻的温度系数。假设量热器及其中的油以及线圈所构成的系统温度升高的速率与该系统吸收的热量的速率(即单位时间内吸收的热量)成正比;对油加热过程中加在线圈两端的电压恒定不变;系统损失的热量可忽略不计。式中v30表示30℃时系统升温的速率,由(1)、(2)、(3)、(4)各式得==1+30α(5)代入数据解得α=3.7×10-3K-1。(6)三.(10分)某同学设计了一个如图所示的实验电路,用以测定电源电动势和内阻,使用的实验器材为:待测干电池组(电动势约3V)、电流表(量程0.6A,内阻小于1)、电阻箱(0~99.99)、滑动变阻器(0~10)、单刀双掷开关、单刀单掷开关各一个及导线若干。考虑到干电池的内阻较小,电流表的内阻不能忽略。(1)该同学按图连线,通过控制开关状态,测得电流表内阻约为0.20。试分析该测量产生误差的原因是_________________________________________。(2)简要写出利用如图所示电路测量电源电动势和内阻的实验步骤:①______________________________________________________;②_____________________________________________________。(3)图是由实验数据绘出的图象,由此求出待测干电池组的电动势E=____________V、内阻r=_______。(计算结果保留三位有效数字)三.答案:(1)满偏时滑动变阻器阻值与电流表阻值之比偏低;电阻箱的阻值不能连续调节.(2)①断开K,将R旋至最大值,S掷向D;②调小R直到电流表指针有足够偏转,改变R值测出几组I随R变化的数据.(3)E=2.86V(2.76—2.96V均给分)r=2.37Ω(2.37—2.47Ω均给分)四.如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d=0.5m,左端接有容量C=2000μF的电容。质量m=20g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2T。现用一沿导轨方向向右的恒力F1=0.44N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5m/s。此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。求(1)导体棒运动到B处时,电容C上的电量;(2)t的大小;(3)F2的大小。五.一列横波在x轴上传播,在tl=0时刻波形如下图实线所示,t2=0.05s时刻波形如下图虚线所示。(i)由波形曲线读出这列波的振幅和波长;(ii)若周期大于(t2-tl),写出波速的表达式,(iii)若周期大于(t2-tl),求出最大波速,并指出最大波速对应的传播方向。(iii)对比波沿x轴正方向传播时波速的表达式为:v=,(n=0或1)和波沿x轴负方向传播时波速的表达式v=,(n=0或1)可知,波沿x轴负方向传播,n=1时波速最大,最大速度vmax==280m/s。方向为沿x轴负方向。六.(20分)如图所示,在半径为R的圆形区域内有水平向里的匀强磁场,圆形区域右侧距离圆形区域右边缘距离为d处有一竖直感光板。圆形区域上侧有两块平行金属极板,金属极板上侧有一粒子源,粒子源中可以发射速度很小的质量为m的2价阳离子(带电量为+2e),离子重力不计。(1)若离子从圆弧顶点P以速率v0平行于纸面进入磁场,求在两块平行金属极板所加的电压U。(2)若粒子从圆弧顶点P以速率v0对准圆心射入,若它刚好从圆形区域右侧射出,垂直打在竖直感光板上,求圆形区域内磁场的磁感应强度B;(3)若圆形区域内磁场的磁感应强度为B,离子以某一速度对准圆心射入,若...