11.3.1多边形1.了解多边形及有关概念,理解正多边形及其有关概念.2.了解凸凹多边形的区别.了解多边形及其有关概念,理解正多边形及其有关概念.多边形对角线的条数及其规律的探索.一、创设情景,明确目标多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题.二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标多边形的定义及有关概念活动一:阅读教材P19.展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?小组讨论:结合具体图形说出多边形的边、内角、外角?反思小结:多边形的定义及相关概念.针对训练:见《学生用书》相应部分多边形的对角线活动二:(1)十边形的对角线有__35__条.(2)如果经过多边形的一个顶点有36条对角线,这个多边形是__39__边形.展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n-3)是什么意思?为什么要除以2?反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数.小组讨论:如何灵活运用多边形对角线条数的规律解题?针对训练:见《学生用书》相应部分正多边形的有关概念活动二:阅读教材P20.展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?小组讨论:判断一个多边形是否是正多边形的条件?反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形.针对训练:见《学生用书》相应部分四、总结梳理,内化目标本节学习的数学知识是:1.多边形、多边形的外角,多边形的对角线.2.凸凹多边形的概念.五、达标检测,反思目标1.下列叙述正确的是(D)A.每条边都相等的多边形是正多边形B.如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形C.每个角都相等的多边形叫正多边形D.每条边、每个角都相等的多边形叫正多边形2.小学学过的下列图形中不可能是正多边形的是(D)A.三角形B.正方形C.四边形D.梯形3.多边形的内角是指__多边形相邻两边组成的角__;多边形的外角是指__多边形的边与它的邻边的延长线组成的角__;多边形的内角和它相邻的外角是__邻补角__关系.4.已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数.解:设各内角分别为x°、2x°、3x°、4x°,则x+2x+3x+4x=360∴x=36x°=36°∴2x°=72°3x°=108°4x°=144°5.一个十边形共有多条对角线?解:设这个十边形有n条对角线,当n=10时,=35∴有35条对角线。6.有一个家庭联谊会,参加的家庭全部是三口之家,在联谊会期间,每个人都要和别的家庭的每个成员握一次手.若参加会议的人数为15,则一共要握手多少次?解:=90次一共需要握手90次.1.上交作业课本P241、2、3、4、5、6.2.课后作业见《学生用书》.