官田中学集体备课教案(首页)年级九年级学科数学教者.周次教学时间年月日课时累计课时1课题5.1反比例函数课型新授课教学目标(知识与技能、过程与方法、情感态度与价值观)一、教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。二、能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。三、情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用。教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。教学难点领会反比例函数的意义,理解反比例函数的概念。教学用具教学方法学习方法自主探究、合作交流等。一、创设情境、导入新课回忆一下什么叫函数?在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.例如,购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n,这是一个正比例函数。又如,等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数等。一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t=中,t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?二、探索新知1.下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式?问题1:电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?(1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.问题2:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.从上面的两个例题得出关系式I=和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?能否根据两个例题归纳出这一类函数的表达式呢?一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数。从y=中可知x作为分母,所以x不能为零.反比例函数有三种表达式:(1)(k为常数,k≠0)(2)(k≠0)(3)(k为定值,k≠0)2.练习:(1)下列函数是反比例函数吗?若是,并指出K的值。①y=-3/x②y=-1/2x③x=1/y④xy=p⑤y=4/x2⑥y=1/(x+1)⑦y=x/3(2)如果y与x成反比例,z与y成正比例,则z与x成__________;(3)函数ymxmm()2229是反比例函数,则的值是________。三、做一做1.一个矩形的面积为20,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么...