1/6一、选择题:(本大题共12小题,每小题5分,共60分)1.离心率为32,长轴长为6的椭圆的标准方程是()(A)22195xy(B)22195xy或22159xy(C)2213620xy(D)2213620xy或2212036xy2.动点P到两个定点1F(-4,0).2F(4,0)的距离之和为8,则P点的轨迹为()A.椭圆B.线段12FFC.直线12FFD.不能确定3.已知椭圆的标准方程22110yx,则椭圆的焦点坐标为()A.(10,0)B.(0,10)C.(0,3)D.(3,0)4.已知椭圆22159xy上一点P到椭圆的一焦点的距离为3,则P到另一焦点的距离是()A.253B.2C.3D.65.如果22212xyaa表示焦点在x轴上的椭圆,则实数a的取值范围为()A.(2,)B.2,12,C.(,1)(2,)D.任意实数R6.关于曲线的对称性的论述正确的是()A.方程220xxyy的曲线关于X轴对称B.方程330xy的曲线关于Y轴对称C.方程2210xxyy的曲线关于原点对称D.方程338xy的曲线关于原点对称7.方程22221xykakb(a>b>0,k>0且k≠1)与方程22221xyab(a>b>0)表示的椭圆().A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴;D.有相同的顶点.8.已知椭圆2222:1(0)xyCabab>>的离心率为32,过右焦点F且斜率为(0)kk>的直线与C相交于AB、两点.若3AFFB,则k()(A)1(B)2(C)3(D)29.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.54B.53C.52D.5110.若点O和点F分别为椭圆22143xy的中心和左焦点,点P为椭圆上的任意一点,则OPFP的最大值为()A.2B.3C.6D.811.椭圆222210xyaab>b>的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是()(A)(0,22](B)(0,12](C)[21,1)(D)[12,1)12.若直线yxb与曲线234yxx有公共点,则b的取值范围是()A.[122,122]B.[12,3]C.[-1,122]D.[122,3]二、填空题:(本大题共4小题,共16分.)13若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14椭圆2214924xy上一点P与椭圆两焦点F1,F2的连线的夹角为直角,则Rt△PF1F2的面积为.15已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且DFFB2,则C的离心率为.16已知椭圆22:12xcy的两焦点为12,FF,点00(,)Pxy满足2200012xy,则|1PF|+2PF|的取值范围为_______。三、解答题:(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)已知点M在椭圆221259xy上,M'P垂直于椭圆焦点所在的直线,垂直为'P,并且M为线段P'P的中点,求P点的轨迹方程18.(12分)椭圆221(045)45xymm的焦点分别是1F和2F,已知椭圆的离心率53e过中心2/6O作直线与椭圆交于A,B两点,O为原点,若2ABF的面积是20,求:(1)m的值(2)直线AB的方程19(12分)设1F,2F分别为椭圆2222:1xyCab(0)ab的左、右焦点,过2F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,1F到直线l的距离为23.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果222AFFB,求椭圆C的方程.20(12分)设椭圆C:22221(0)xyabab的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,2AFFB.(1)求椭圆C的离心率;(2)如果|AB|=154,求椭圆C的方程.21(12分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于13.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。22(14分)已知椭圆22221xyab(a>b>0)的离心率e=32,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).(i)若42AB5||=,求直线l的倾斜角;(ii)若点Qy0(0,)在线段AB的垂直平分线上,且4QBQA.求y0的值.3/6椭圆(一)参考答案1.选择题:题号123456789101112答案BBCCBCABBCDD910【解析】由题意,F(-1,0),设点P00(,)xy,则有2200143xy,解得22003(1)4xy,因为00(1,)FPxy,00(,)OPxy,所以2000(1)OPFPxxy=00(1)OPFPxx203(1)4x=20034xx,此二次函数对应的抛物线的对称轴为02x,因为022x,所以当02x时,OPFP取得最大值222364,选C。【命题意...