14321-1-4-22421专题:正态分布例:(1)已知随机变量X服从二项分布,且E(X)=2.4,V(X)=1.44,则二项分布的参数n,p的值为A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1答案:B。解析:4.2npXE,44.1)1(pnpXV。(2)正态曲线下、横轴上,从均数到的面积为()。A.95%B.50%C.97.5%D.不能确定(与标准差的大小有关)答案:B。解析:由正态曲线的特点知。(3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是()A32B16C8D20答案:B。解析:数学成绩是X—N(80,102),80809080(8090)(01)0.3413,480.3413161010PXPZPZ。(4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。答案:8.5。解析:设两数之积为X,X23456810121520P0.10.10.10.10.10.10.10.10.10.1∴E(X)=8.5.(5)如图,两个正态分布曲线图:1为)(1,1x,2为)(22x,则12,12(填大于,小于)答案:<,>。解析:由正态密度曲线图象的特征知。【课内练习】1.标准正态分布的均数与标准差分别为()。A.0与1B.1与0C.0与0D.1与1答案:A。解析:由标准正态分布的定义知。2.正态分布有两个参数与,()相应的正态曲线的形状越扁平。A.越大B.越小C.越大D.越小答案:C。解析:由正态密度曲线图象的特征知。3.已在n个数据nxxx,,,21,那么niixxn121是指A.B.C.2D.2()答案:C。解析:由方差的统计定义知。4.设),(~pnB,12E,4D,则n的值是。答案:4。解析:12npE,(1)4Dnpp5.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题。记X为解出该题的人数,则E(X)=。答案:1712。解析:11121145(0),(1),3412343412PXPX231(2)342PX。2∴15117()012212212EX。6.设随机变量服从正态分布)1,0(N,则下列结论正确的是。(1))0)(|(|)|(|)|(|aaPaPaP(2))0(1)(2)|(|aaPaP(3))0)((21)|(|aaPaP(4))0)(|(|1)|(|aaPaP答案:(1),(2),(4)。解析:(||)0Pa。7.抛掷一颗骰子,设所得点数为X,则D(X)=。答案:3512。解析:1(),1,2,,66PXkk,按定义计算得735(),()212EXVX。【作业本】A组1.袋中装有5只球,编号为1,2,3,4,5,从中任取3球,以X表示取出球的最大号码,则E(X)等于()A、4B、5C、4.5D、4.75答案:C。解析:X的分布列为X345P0.10.30.6故E(X)=30.1+40.3+50.6=4.5。2.下列函数是正态分布密度函数的是()A.2221)(rxexfB.2222)(xexfC.412221)(xexfD.2221)(xexf答案:B。解析:选项B是标准正态分布密度函数。3.正态总体为1,0概率密度函数)(xf是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数答案:B。解析:221()2xfxe。4.已知正态总体落在区间,2.0的概率是0.5,那么相应的正态曲线在x时达到最高点。答案:0.2。解析:正态曲线关于直线x对称,由题意知0.2。5.一次英语测验由40道选择题构成,每道有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分120分,某学生选对一道题的概率为0.7,求该生在这次测验中的成绩的期望为;方差为。答案:84;75.6。解析:设X为该生选对试题个数,η为成绩,则X~B(50,0.7),η=3X∴E(X)=40×0.7=28V(X)=40×0.7×0.3=8.43故E(η)=E(3X)=3E(X)=84V(η)=V(3X)=9V(X)=75.66.某人进行一个试验,若试验成功则停止,若实验失败,再重新试验一次,若试验三次均失败,则放弃试验,若此人每次试验成功的概率为32,求此人试验次数X的分布列及期望和方差。解:X的分布列为X123P232919故22113()1233999EX,22211338()149()399981VX。7.甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s,若他们独立的射击两次,设乙命中10环的次数为X,则EX=34,Y为甲与乙命中10环的差的绝对值.求s的值及Y的分布列及期望.答案:解:由已知可得),2(~sBX,故32,342ssEX所以.有Y的取值可以是0,1,2.甲、乙两人命中10环的次数都是0次的概率是361)31()21(22,甲、乙两人命中10环的次数都是1次的概率是92)32313132)(21212121(,甲、乙两人命中10环的次数都是2次的概率是91)3232)(2121(所以36139192361)0(YP;...