标准实用文案大全求解电场强度方法分类赏析一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m、电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动到B点,,其速度方向改变的角度为θ(弧度),AB弧长为s,求AB弧中点的场强E。【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。由牛顿第二定律可得电场力F=F向=mrv2。由几何关系有r=s,所以F=msv2,根据电场强度的定义有E=qF=qsmv2。方向沿半径方向,指向由场源电荷的电性来决定。2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为AA.200/VmB.2003/VmC.100/VmD.1003/Vm(1)在匀强电场中两点间的电势差U=Ed,d为两点沿电场强度方向的距离。在一些非强电场中可以通过取微元或等效的方法来进行求解。(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。3.运用“电场叠加原理”求解例3(2010海南).如右图2,M、N和P是以MN为直径的半圈弧上的三点,O点为半圆弧的圆心,60MOP.电荷量相等、符号相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为1E;若将N点处的点电荷移至P则O点的场场强大小变为2E,1E与2E之比为BA.1:2B.2:1C.2:3D.4:3二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置图360°PNOM图2标准实用文案大全一均匀带电的细杆MN,如图3所示。金属球上感应电荷产生的电场在球内直径上a、b、c三点的场强大小分别为Ea、Eb、Ec,三者相比()A.Ea最大B.Eb最大C.Ec最大D.Ea=Eb=Ec【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应电荷所产生的电场强度应与带电细杆MN在该点产生的电场强度大小相等,方向相反。均匀带电细杆MN可看成是由无数点电荷组成的。a、b、c三点中,c点到各个点电荷的距离最近,即细杆在c点产生的场强最大,因此,球上感应电荷产生电场的场强c点最大。故正确选项为C。点评:求解感应电荷产生的电场在导体内部的场强,转化为求解场电荷在导体内部的场强问题,即E感=-E外(负号表示方向相反)。5.运用“对称法”(又称“镜像法”)求解例5.(2013新课标I)如图4,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>O)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)A.k错误!未找到引用源。B.k错误!未找到引用源。C.k错误!未找到引用源。D.k错误!未找到引用源。【解析】:点电荷+q在b点场强为E1、薄板在b点场强为E2,b点场强为零是E1与E2叠加引起的,且两者在此处产生的电场强度大小相等,方向相反,大小E1=E2=2Rkq。根据对称性可知,均匀薄板在d处所形成的电场强度大小也为E2,方向水平向左;点电荷在d点场强E3=2)3(Rkq,方向水平向左。根据叠加原理可知,d点场Ed=E2+E3=2910Rkq。点评:对称法是利用带电体电荷分布具有对称性,或带电体产生的电场具有对称性的特点来求合电场强度的方法。通常有中心对称、轴对称等。例7如图6所示,在一个接地均匀导体球的右侧P点距球心的距离为d,球半径为R.。在P点放置一个电荷量为+q的点电荷。试求导体球感应电荷在P点的电场强度大小。析与解:如图6所示,感应电荷在球上分布不均匀,靠近P一侧较密,关于OP对称,因此感应电荷的等效分布点在OP连线上一点P′。设P′距离O为r,导体球接地,故球心O处电势为零。根据电势叠加原理可知,导体表面感应电荷总电荷量Q在O点引起的电势与点电荷q在O点引导起的电势之和为零,即dkq+RkQ=0,即感应电荷量Q=qdR。同理,Q与q在球面上任意点引起的电势叠加之后也为零,即22cos2rRrRkQ=22cos2dRdRkq,其图4图6标准实用文案大全中α为球面上任意一点与O连线和OP的夹角,具有任意性。将Q代入上式并进行数学...