1.1.3分类计数原理与分步计数原理(二)一、复习回顾:•两个计数原理的内容是什么?•解决两个计数原理问题需要注意什么问题?有哪些技巧?练习1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?甲地乙地丙地丁地解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以m1=2×3=6种不同的走法;第二类,由甲经丁去丙,也需分两步,所以m2=4×2=8种不同的走法;所以从甲地到丙地共有N=6+8=14种不同的走法。练习2:三个比赛项目,六人报名参加。1)每人参加一项有多少种不同的方法?2)每项1人,且每人至多参加一项,有多少种不同的方法?3)每项1人,每人参加的项数不限,有多少种不同的方法?72936654120362161、将数字1,2,3,4,填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有_____种练习:1号方格里可填2,3,4三个数字,有3种填法。1号方格填好后,再填与1号方格内数字相同的号的方格,又有3种填法,其余两个方格只有1种填法。所以共有3*3*1=9种不同的方法。例1用0,1,2,3,4,5这六个数字,(1)可以组成多少个各位数字不允许重复的三位的奇数?(2)可以组成多少个各位数字不重复的小于1000的自然数?一、排数字问题二、映射个数问题:•例2设A={a,b,c,d,e,f},B={x,y,z},从A到B共有多少种不同的映射?例3、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?三、染色问题:解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3种,第二步,m2=2种,第三步,m3=1种,第四步,m4=1种,所以根据乘法原理,得到不同的涂色方案种数共有N=3×2×1×1=6种。变式、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?若用2色、4色、5色等,结果又怎样呢?答:它们的涂色方案种数分别是0、4×3×2×2=48、5×4×3×3=180种等。思考:2、有6种不同颜色为下列两块广告牌着色,要求在①②③④四个区域中相邻(有公共边界)区域中不用同一种颜色.(1)为(1)着色时共有多少种方法?(2)为(2)着色时共有多少种不同方法?•①③①•④③④•②②•(1)(2)3、如图,是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻的正方形涂不同的颜色。如果颜色可反复使用,那么共有多少种涂色方法?四、综合问题:•例4若直线方程ax+by=0中的a,b可以从0,1,2,3,4这五个数字中任取两个不同的数字,则方程所表示的不同的直线共有多少条?解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=1×2=2条第二类,m2=1×2=2条第三类,m3=1×2=2条所以,根据加法原理,从顶点A到顶点C1最近路线共有N=2+2+2=6条。练习.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?