专题七概率与统计、算法初步、框图、复数第1讲概率1.根据统计显示,某人射击1次,命中8环、9环、10环的概率分别为0.25、0.15、0.08,则此人射击1次,命中不足8环的概率为()A.0.77B.0.52C.0.48D.0.372.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A.B.C.D.3.(2010年高考安徽卷)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.B.C.D.4.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2xy=1的概率为()A.B.C.D.5.已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,记函数f(x)满足条件,为事件A,则事件A发生的概率为()A.B.C.D.6.设a∈{1,2,3,4},b∈{2,4,8,12},则函数f(x)=x3+ax-b在区间[1,2]上有零点的概率为()A.B.C.D.7.(2010年高考上海卷)从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)__________(结果用最简分数表示).8.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线-=1的离心率e>的概率是__________.9.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品,从中任取1件,已知取得的是合格品,则它是一等品的概率为__________.10.(2010年高考湖南卷)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B,C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.用心爱心专心111.(2010年高考山东卷)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.12.已知关于x的一元二次函数f(x)=ax2-bx+1(a≠0),设集合P={1,2,3},Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b.(1)求函数y=f(x)有零点的概率;用心爱心专心2(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.用心爱心专心3第2讲统计、统计案例1.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.512.5B.12.513C.1312.5D.13132.(2009年高考宁夏、海南卷)对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(ui,vi)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关3.(2010年河南开封质检)一次选拔运动员,测得7名选手的身高(单位:cm)分布茎叶图为,记录的平均身高为177cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为()A.5B.6C.7D.84.最小二乘法的原理是()A.使得yi-(a+bxi)]最小B.使得yi-(a+bxi)2]最小C.使得y-(a+bxi)2]最小D.使得yi-(a+bxi)]2最小5.某单位为了了解用电量y(度)与气温x(°C)之间的关系,随机统计了某4天的用电量与用心爱心专心4当天气温,并制作了对照表:气温x(°C)181310-1用电量y(度)24343864由表中数据得线性回归方程y=bx+a中b≈-2,预测当气温为-4°C时,用电量的度数约为()A.58B.66C.68D.706.(2010年广东汕头调研)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()分数54321人数2010303010A.B.C.3D.7.(2010年浙江宁波十校联考)一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是__________.8.有一容量为n的样本...