电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

3.4生活中的优化问题举例VIP免费

3.4生活中的优化问题举例_第1页
1/13
3.4生活中的优化问题举例_第2页
2/13
3.4生活中的优化问题举例_第3页
3/13
生活中的优化问题举例人教A版2003课标版高中数学选修1-1一复习引入:如何用导数来求函数的最值?一般地,若函数y=f(x)在[a,b]上的图象是一条连续不断的曲线,则求f(x)的最值的步骤是:(1)求y=f(x)在[a,b]内的极值(极大值与极小值);(2)将函数的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个为最大值,最小的一个为最小值.特别地,如果函数在给定区间内只有一个极值点,则这个极值一定是最值。生活中经常会遇到求什么条件下可使用料最省,利润最大,效率最高等问题,这些问题通常称为优化问题.这往往可以归结为求函数的最大值或最小值问题.其中不少问题可以运用导数这一有力工具加以解决.规格(规格(LL))221.251.250.60.6价格(元)价格(元)5.15.14.54.52.52.5二典例讲解:问题饮料瓶大小对饮料公司利润的影响下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?例:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8r2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢?2()=0.8π-20=2(),f'rrrr令得r(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗-1.07解: 每个瓶的容积为:)(343mlr∴每瓶饮料的利润:238.0342.0)(rrrfy32=0.8(-)3rπr)60(r解:设每瓶饮料的利润为y,则32=0.8(-)3rπr)60(rr(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗ f(r)在(2,6]上只有一个极值点∴由上表可知,f(2)=-1.07为利润的最小值-1.07例:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8r2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢?解:设每瓶饮料的利润为y,则32=0.8(-)3rπr)60(r 当r(0∈,2)时,()<(0)0frf而f(6)=28.8,故f(6)是最大值答:当瓶子半径为6cm时,每瓶饮料的利润最大,当瓶子半径为2cm时,每瓶饮料的利润最小.例:某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8r2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢?解决优化问题的方法之一:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有力的工具,其基本思路如以下流程图所示优化问题用函数表示的数学问题用导数解决数学问题优化问题的答案练习:经统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:若已知甲、乙两地相距100千米。(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油为升;(II)若速度为x千米/小时,则汽车从甲地到乙地需行驶小时,记耗油量为h(x)升,其解析式为:.(III)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油量最少?最少为多少升?3138(0120).12800080yxxx17.5100x例2、经统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:若已知甲、乙两地相距100千米。(III)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?3138(0120).12800080yxxx解:设当汽车以xkm/h的速度行驶时,从甲地到乙地的耗油量为h(x)L,则313100()(8).12800080hxxxx2180015(0120)12804xxx332280080'()(0120)640640xxhxxxx令'()0,hx得80.x当(0,80)x时,'()0,()hxhx是减函数;当(80,120]x时,'()0,()hxhx是增函数。当80x时,()hx取到极小值(80)11.25.h因为()hx在(0,120]上只有一个极值,所以它是最小值。答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

3.4生活中的优化问题举例

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部