课时达标检测(四十三)圆的方程[练基础小题——强化运算能力]1.方程x2+y2+2x-4y-6=0表示的图形是()A.以(1,-2)为圆心,为半径的圆B.以(1,2)为圆心,为半径的圆C.以(-1,-2)为圆心,为半径的圆D.以(-1,2)为圆心,为半径的圆解析:选D由x2+y2+2x-4y-6=0得(x+1)2+(y-2)2=11,故圆心为(-1,2),半径为.2.圆心在y轴上且通过点(3,1)的圆与x轴相切,则该圆的方程是()A.x2+y2+10y=0B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=0解析:选B设圆心为(0,b),半径为r,则r=|b|,故圆的方程为x2+(y-b)2=b2. 点(3,1)在圆上,∴9+(1-b)2=b2,解得b=5.∴圆的方程为x2+y2-10y=0.3.若圆C的半径为1,圆心C与点(2,0)关于点(1,0)对称,则圆C的标准方程为()A.x2+y2=1B.(x-3)2+y2=1C.(x-1)2+y2=1D.x2+(y-3)2=1解析:选A因为圆心C与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C(0,0),所以所求圆的标准方程为x2+y2=1.4.已知=(2+2cosα,2+2sinα),α∈R,O为坐标原点,向量满足+=0,则动点Q的轨迹方程是________.解析:设Q(x,y), +=(2+2cosα+x,2+2sinα+y)=(0,0),∴∴(x+2)2+(y+2)2=4.答案:(x+2)2+(y+2)2=45.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为________.解析:如图所示,圆心M(3,-1)到定直线x=-3上点的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4[练常考题点——检验高考能力]一、选择题1.方程y=表示的曲线是()A.上半圆B.下半圆C.圆D.抛物线解析:选A由方程可得x2+y2=1(y≥0),即此曲线为圆x2+y2=1的上半圆.2.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为()A.x2+(y-2)2=5B.(x-2)2+y2=5C.x2+(y+2)2=5D.(x-1)2+y2=5解析:选B因为所求圆的圆心与圆(x+2)2+y2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为,故所求圆的方程为(x-2)2+y2=5.3.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=2解析:选D由题意知x-y=0和x-y-4=0之间的距离为=2,所以r=.又因为y=-x与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由y=-x和x-y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C的标准方程为(x-1)2+(y+1)2=2.4.已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是()A.B.1C.D.解析:选C圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线的距离d==,故点N到点M的距离的最小值为d-1=.5.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5D.4解析:选B根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m,因为∠APB=90°,连接OP,易知|OP|=|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|==5,所以|OP|max=|OC|+r=6,即m的最大值为6.6.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.-1C.6-2D.解析:选A圆C1,C2的图象如图所示.设P是x轴上任意一点,则|PM|的最小值为|PC1|-1,同理|PN|的最小值为|PC2|-3,则|PM|+|PN|的最小值为|PC1|+|PC2|-4.作C1关于x轴的对称点C1′(2,-3),连接C1′C2,与x轴交于点P,连接PC1,可知|PC1|+|PC2|的最小值为|C1′C2|==5,则|PM|+|PN|的最小值为5-4.二、填空题7.在平面直角坐标系内,若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第四象限内,则实数a的取值范围为________.解析:圆C的标准方程为(x+a)2+(y-2a)2=4,所以圆心为(-a,2a),半径r=2,故由题意知解得a<-2,故实数a的取值范围为(-∞,-2).答案:(-∞,-2)8.当方程x2...