高中数学第二章概率2.1随机变量及概率分布自我小测苏教版选修2-31.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个小球上的数字之积为X,则X可能取值的个数为__________.2.设随机变量X的分布列为:X1234Pp则p=__________.3.某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P(ξ=1)=__________.4.设随机变量ξ等可能取值1,2,3,…,n,若P(ξ<4)=0.3,则n=__________.5.已知随机变量ξ只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d的范围为__________.6.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题总得分ξ的所有可能取值是__________.7.随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,其中C为常数,则P(ξ≥2)=__________.8.若离散型随机变量ξ的分布列为:ξ01P9a2-a3-8a求常数a及相应的分布列.9.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是,,,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果.10.某次演唱比赛,需要加试文化科学素质,每位参赛选手需加答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目,测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.某选手抽到科技类题目ξ道.(1)试求出随机变量ξ的值域;(2){ξ=1}表达的事件是什么?可能出现多少种结果?1参考答案1答案:10解析:X的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5共10个.2答案:解析:由分布列的性质知:+++p=1,∴p=.3答案:解析:此试验符合两点分布,设失败率为a,则成功率为2a.∴a+2a=1,∴a=.故P(ξ=1)=2a=.4答案:10解析:∵ξ等可能取值1,2,3,…,n,∴ξ的每个值的概率均为.由题意知:P(ξ<4)=P(ξ=1)+P(ξ=2)+P(ξ=3)==0.3,∴n=10.5答案:解析:设ξ的分布列为:ξx1x2x3Pa-daa+d由随机变量的分布列的性质知:解得.6答案:300,100,-100,-300解析:回答全对,ξ=300;两对一错,ξ=100;两错一对,ξ=-100;全错,ξ=-300.7答案:解析:由P(ξ=1)+P(ξ=2)+P(ξ=3)=1,得,∴.P(ξ≥2)=P(ξ=2)+P(ξ=3)=.28解:由离散型随机变量的性质得解得,或(舍).∴随机变量ξ的分布列为:ξ01P9解:{X=0}表示第一关未通过;{X=1000}表示通过第一关,未通过第二关;{X=4000}表示通过第一关,第二关,未通过第三关;{X=10000}表示通过全部三关.10解:(1)由题意得ξ的值域是{0,1,2,3}.(2){ξ=1}表示的事件是“恰抽到一道科技题”.考虑顺序,三类题目各抽取一道有5×3×2×=180种结果;1道科技题2道文史题有3×3×=180种结果;1道科技题2道体育题有3×3×2=18种结果.由分类加法计数原理知可能出现180+180+18=378种结果.3