第九章平面解析几何9.7双曲线试题理北师大版1.双曲线定义平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.这两个定点F1,F2叫作双曲线的焦点,两焦点之间的距离叫作双曲线的焦距.其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±xy=±x离心率e=,e∈(1,+∞),其中c=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长a、b、c的关系c2=a2+b2(c>a>0,c>b>0)【知识拓展】巧设双曲线方程(1)与双曲线-=1(a>0,b>0)有共同渐近线的方程可表示为-=t(t≠0).(2)过已知两个点的双曲线方程可设为+=1(mn<0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.(×)(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.(√)(4)等轴双曲线的渐近线互相垂直,离心率等于.(√)(5)若双曲线-=1(a>0,b>0)与-=1(a>0,b>0)的离心率分别是e1,e2,则+=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线-=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.B.5C.D.2答案A解析由题意得b=2a,又a2+b2=c2,∴5a2=c2.∴e2==5,∴e=.2.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()A.B.2C.4D.8答案C解析设C:-=1. 抛物线y2=16x的准线为x=-4,联立-=1和x=-4,得A(-4,),B(-4,-),∴|AB|=2=4,∴a=2,∴2a=4.∴C的实轴长为4.3.(2015·安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2-=1B.-y2=1C.-x2=1D.y2-=1答案C解析由双曲线性质知A、B项双曲线焦点在x轴上,不合题意;C、D项双曲线焦点均在y轴上,但D项渐近线为y=±x,只有C符合,故选C.4.(2016·江苏)在平面直角坐标系xOy中,双曲线-=1的焦距是________.答案2解析由已知,a2=7,b2=3,则c2=7+3=10,故焦距为2c=2.5.双曲线-y2=1的顶点到其渐近线的距离等于________.答案解析双曲线的一个顶点坐标为(2,0),一条渐近线方程是y=x,即x-2y=0,则顶点到渐近线的距离d==.题型一双曲线的定义及标准方程命题点1利用定义求轨迹方程例1已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为____________________.答案x2-=1(x≤-1)解析如图所示,设动圆M与圆C1及圆C2分别外切于A和B.根据两圆外切的条件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|,因为|MA|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,即|MC2|-|MC1|=|BC2|-|AC1|=2,所以点M到两定点C1、C2的距离的差是常数且小于|C1C2|=6.又根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小),其中a=1,c=3,则b2=8.故点M的轨迹方程为x2-=1(x≤-1).命题点2利用待定系数法求双曲线方程例2根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,2)和Q(-6,-7).解(1)设双曲线的标准方程为-=1或-=1(a>0,b>0).由题意知,2b=12,e==.∴b=6,c=10,a=8.∴双曲线的标准方程为-=1或-=1.(2) 双曲线经过点M(0,12),∴M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a=12.又2c=26,∴c=13,∴b2=c2-a2=25.∴双曲线的标准方程为-=1.(3)设双曲线方程为mx2-ny2=1(mn>0).∴解得∴双曲线的标准方程为-=1.命题点3利用定义解决焦点三...