3.2《复数代数形式的四则运算》1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).例1.计算)43()2()65(iii解:iiiii11)416()325()43()2()65(2.复数的乘法与除法(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i2换成-1,并且把实部合并.即:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.思考:设z=a+bi(a,b∈R),那么(1)定义:实部相等,虚部互为相反数的两个复数互为共轭复数.复数z=a+bi的共轭复数记作?zz,zzabi即?zz3.共轭复数的概念、性质:(2)共轭复数的性质:.2-2bizzazz;注:实数的共轭复数是它本身.))((1biabia)(22222)(2ibabiabia)(例2:计算222ibabiabia22ba222babia)2)(43)(21(3iii)(iiiiii1520)2)(211()2)(43)(21((3)复数的除法法则先把除式写成分式的形式,再把分子与分母都乘以分母的共轭复数,化简后写成代数形式(分母实数化).即分母实数化dicbiadicbia)()())(())((dicdicdicbia22)()(dciadbcbdac例3.计算)43()21(ii解:iiii4321)43()21()43)(43()43)(21(iiii2510543468322iiii5251(1)已知求iziz41,232121212121,,,zzzzzzzz练习(2)已知求iziz2,1212214121)(,,zzzzz(3)2)1(i;2iii11i1;iii11;i.i