第一章§2第2课时一、选择题1.已知等差数列{an}中,a3=5,a5=9,则a7=()A.11B.12C.13D.14[答案]C[解析]设公差为d, a5-a3=2d,∴2d=4,又a7=a5+2d=9+4=13.2.在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8=()A.45B.75C.180D.300[答案]C[解析]由a3+a7=a4+a6=2a5,得a3+a7+a4+a6+a5=5a5=450,∴a5=90.∴a2+a8=2a5=180.3.下列命题中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列[答案]C[解析] a,b,c成等差数列,∴2b=a+c,∴2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),∴a+2,b+2,c+2成等差数列.4.已知等差数列{an}中,a7+a9=16,a4=1,则a12等于()A.15B.30C.31D.64[答案]A[解析] a7+a9=2a8=16,故a8=8.在等差数列{an}中,a4,a8,a12成等差数列,所以a12=2a8-a4=16-1=15.5.已知等差数列{an}满足a1+a2+a3…++a101=0,则有()A.a1+a101>0B.a2+a100<0C.a3+a100≤0D.a51=0[答案]D[解析]由题设a1+a2+a3…++a101=101a51=0,∴a51=0.6.设{an}为等差数列,则下列数列中,是等差数列的个数为()①{a}②{pan}③{pan+q}④{nan}(p,q为非零常数)A.1B.2C.3D.4[答案]B[解析]{pan}、{pan+q}的公差为pd(设{an}的公差为d),而{nan}{a}不符合等差数列的定义.二、填空题7.在数列{an}中,a3,a10是方程x2-3x-5=0的两根,若{an}是等差数列,则a5+a8=________.[答案]3[解析]由题意,得a3+a10=3,∴a5+a8=a3+a10=3.8.等差数列{an}中,a2+a3+a10+a11=36,则a6+a7=________.[答案]18[解析] {an}为等差数列,∴a2+a11=a3+a10=a6+a7,∴a2+a3+a10+a11=2(a6+a7)=36,∴a6+a7=18.三、解答题9.已知等差数列{an}的公差是正数,且a3a7=-12,a4+a6=-4,求{an}的通项公式.[解析] a3+a7=a4+a6=-4,又a3a7=-12∴a3、a7是方程x2+4x-12=0的两根而d>0,∴a3=-6,a7=2.∴,故a1=-10,d=2,∴an=2n-12.10.四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.[解析]设四个数为a-3d,a-d,a+d,a+3d,据题意得,(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=94⇒2a2+10d2=47.①又(a-3d)(a+3d)=(a-d)(a+d)-18⇒8d2=18⇒d=±代入①得a=±,故所求四数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1.一、选择题1.等差数列{an}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30B.27C.24D.21[答案]B[解析]解法一:设b1=a1+a4+a7=39,b2=a2+a5+a8=33,b3=a3+a6+a9, {an}成等差数列,∴b1,b2,b3成等差数列,∴a3+a6+a9=b3=b2+(b2-b1)=2b2-b1=27.解法二:设等差数列{an}的公差为d,则a2+a5+a8=a1+a4+a7+3d,∴33=39+3d,∴3d=-6,∴a3+a6+a9=a2+a5+a8+3d=33-6=27.2.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0B.37C.100D.-37[答案]C[解析] a1+b1=100,a2+b2=100,∴(a2-a1)+(b2-b1)=0,设等差数列{an},{bn}的公差分别为d1,d2,则d1+d2=0.∴a37+b37=a1+36d1+b1+36d2=a1+b1+36(d1+d2)=a1+b1=100.3.数列{an}中,a2=2,a6=0且数列{}是等差数列,则a4等于()A.B.C.D.[答案]A[解析]令bn=,则b2==,b6==1,由条件知{bn}是等差数列,∴b6-b2=(6-2)d=4d=,∴d=,∴b4=b2+2d=+2×=, b4=,∴a4=.4.等差数列{an}中,a2+a5+a8=9,那么关于x的方程:x2+(a4+a6)x+10=0()A.无实根B.有两个相等实根C.有两个不等实根D.不能确定有无实根[答案]A[解析] a4+a6=a2+a8=2a5,即3a5=9,∴a5=3,方程为x2+6x+10=0,无实数解.二、填空题5.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.[答案]1[解析] a1+a3+a5=105...