第一章§3第4课时一、选择题1.已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于()A.-6(1-3-10)B.(1-310)C.3(1-3-10)D.3(1+3-10)[答案]C[解析]本题考查等比数列的定义,前n项和的求法.3an+1+an=0∴=-=qa2=a1·q=-a1=-,∴a1=4∴S10==3(1-3-10).2.设Sn为等比数列{an}的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q=()A.3B.4C.5D.6[答案]B[解析] 3S3=a4-2,3S2=a3-2,∴3S3-3S2=a4-a3,∴3a3=a4-a3,∴4a3=a4,∴=4,∴q=4.3.若等比数列{an}满足anan+1=64n,则公比为()A.2B.4C.8D.16[答案]C[解析]本题考查了灵活利用数列的特点来解题的能力. an·an+1=64n,∴an-1·an=64n-1∴==q2==64∴q=8.4.在各项为正数的等比数列中,若a5-a4=576,a2-a1=9,则a1+a2+a3+a4+a5的值是()A.1061B.1023C.1024D.268[答案]B[解析]由题意得a4(q-1)=576,a1(q-1)=9,∴=q3=64,∴q=4,∴a1=3,∴a1+a2+a3+a4+a5==1023.5.在等比数列{an}中,a1=1,公比|q|≠1,若am=a1a2a3a4a5,则m=()A.9B.10C.11D.12[答案]C[解析] a1=1,∴am=a1a2a3a4a5=aq10=q10,又 am=a1qm-1=qm-1,∴qm-1=q10,∴m-1=10,∴m=11.6.已知等比数列前20项和是21,前30项和是49,则前10项和是()A.7B.9C.63D.7或63[答案]D[解析]由S10,S20-S10,S30-S20成等比数列,∴(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21),∴S10=7或63.二、填空题7.已知数列{an}中,an=,则a9=______________.设数列{an}的前n项和为Sn,则S9=______________.[答案]256377[解析]a9=28=256,S9=20+22+24+26+28+3+7+11+15=377.8.在等比数列{an}中,已知对于任意n∈N+,有a1+a2…++an=2n-1,则a+a…++a=________.[答案]×4n-[解析] a1+a2…++an=2n-1,∴a1+a2…++an-1=2n-1-1(n≥2),两式相减,得an=2n-1-2n-1+1=2n-2n-1=2n-1,∴a=(2n-1)2=22n-2=4n-1,∴a+a…++a==×4n-.三、解答题9.(·北京文,15)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.[解析](1)设等差数列{an}的公差为d,由题意得d===3.所以an=a1+(n-1)d=3n(n=1,2…,).设等比数列{bn-an}的公比为q,由题意得q3===8,解得q=2.所以bn-an=(b1-a1)qn-1=2n-1,从而bn=3n+2n-1(n=1,2…,).(2)由(1)知bn=3n+2n-1(n=1,2…,).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为1×=2n-1.所以,数列{bn}的前n项和为n(n+1)+2n-1.10.求和Sn=1×2+4×22+7×23…++(3n-2)×2n.[解析] Sn=1×2+4×22+7×23…++[3(n-1)-2]×2n-1+(3n-2)×2n①2Sn=1×22+4×23…++[3(n-1)-2]×2n+(3n-2)×2n+1②∴①-②得,-Sn=1×2+3×22+3×23…++3×2n-(3n-2)×2n+1=3(2+22…++2n)-(3n-2)×2n+1-4=3(2n+1-2)-(3n-2)×2n+1-4=3×2n+1-6-3n×2n+1+2n+2-4=2n+2+3(1-n)×2n+1-10.∴Sn=3(n-1)×2n+1-2n+2+10=(3n-5)×2n+1+10.一、选择题1.已知等比数列{an}中,公比q=,且a1+a3+a5…++a99=60,则a1+a2+a3…++a100=()A.100B.90C.120D.30[答案]B[解析] a2+a4+a6…++a100=a1q+a3q+a5q…++a99q=q(a1+a3+a5…++a99)=×60=30∴a1+a2+a3…++a100=(a1+a3+a5…++a99)+(a2+a4+a6…++a100)=60+30=90.2.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()A.3×44B.3×44+1C.45D.45+1[答案]A[解析]该题考查已知一个数列的前n项和Sn与an+1的关系,求通项公式an.注意的问题是用an=Sn-Sn-1时(n≥2)的条件.an+1=3Sn①an=3Sn-1②①-②得an+1-an=3Sn-3Sn-1=3an即an+1=4an∴=4.(n≥2)当n=2时,a2=3a1=3,∴=3≠=4∴an为从第2项起的等比数列,且公比q=4,∴a6=a2·q4=3·44.3.设{an}是任意等比数列,它...