第一章§3第1课时一、选择题1.已知等比数列{an}中,a2011=a2013=-1,则a2012=()A.-1B.1C.1或-1D.以上都不对[答案]C[解析] a2011,a2012,a2013成等比数列,∴a=a2011·a2012=1,∴a2012=1或-1.2.若{an}为等比数列,且2a4=a6-a5,则公比是()A.0B.1或-2C.-1或2D.-1或-2[答案]C[解析]由2a4=a6-a5,得2a1q3=a1q5-a1q4. a1≠0,q≠0,∴q2-q-2=0,∴q=-1或2.3.等比数列{an}中,若a1=-2,an+1>an,则公比的取值范围是()A.(∞-,1)B.(∞-,0)C.(1∞,+)D.(0,1)[答案]D4.已知2a=3,2b=6,2c=12,则a,b,c()A.成等差数列但不成等比数列B.成等比数列但不成等差数列C.既成等差数列,又成等比数列D.既不成等比数列,也不成等差数列[答案]A[解析]由已知a=log23,b=log26,c=log212,所以2b=a+C.故选A.5.已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7=()A.64B.81C.128D.243[答案]A[解析] {an}是等比数列,a1+a2=3,a2+a3=6,∴设等比数列的公比为q,则a2+a3=(a1+a2)q=3q=6,∴q=2.∴a1+a2=a1+a1q=3a1=3,∴a1=1,∴a7=a1q6=26=64.6.若等比数列{an}满足anan+1=16n,则公比为()A.2B.4C.8D.16[答案]B[解析]令n=1,得a1a2=16,①令n=2,得a2a3=162.②②÷①,得=16,q2=16,∴q=±4.又由①知q>0,∴q=4.二、填空题7.在等比数列{an}中,a2=3,a8=24,则a5=________.[答案]±6[解析] a2=3,a8=24,且{an}为等比数列∴a2·a8=a=3×24=72∴a5=±6.8.若a1,a2,a3,a4成等比数列,公比为2,则的值为________.[答案][解析]由题意,得a2=2a1,a3=4a1,a4=8a1,∴==.三、解答题9.在等比数列{an}中,a2=4,a5=-,求an.[解析]由已知,有a2=4,a5=-.由.得a1=-8,q=-.∴an=(-8)×n-1,即an=(-1)n·.10.已知等比数列{an}中,a1=,a7=27,求an.[解析]由a7=a1q6,得27=·q6,∴q6=272=36,∴q=±3.当q=3时,an=a1qn-1=×3n-1=3n-4;当q=-3时,an=a1qn-1=×(-3)n-1=-(-3)-3·(-3)n-1=-(-3)n-4.故an=3n-4或an=-(-3)n-4.一、选择题1.已知a,b,c成等比数列,则方程ax2+bx+c=0的根的情况为()A.有两个不等实根B.有两个相等实根C.只有一个实根D.无实根[答案]D[解析] a,b,c成等比,∴b2=ac,且b≠0.∴Δ=b2-4ac=b2-4b2=-3b2<0,故方程ax2+bx+c=0无实根.2.在等比数列{an}中,a5·a6·a7=3,a6·a7·a8=24,则a7·a8·a9的值等于()A.48B.72C.144D.192[答案]D[解析]设公比为q,则a6·a7·a8=a5·a6·a7·q3,∴q3==8.又a7·a8·a9=a6·a7·a8·q3=24×8=192.3.数列{an}是公差不为0的等差数列,且a1、a3、a7为等比数列{bn}的连续三项,则数列{bn}的公比为()A.B.4C.2D.[答案]C[解析] a1、a3、a7为等比数列{bn}中的连续三项,∴a=a1·a7,设{an}的公差为d,则d≠0,∴(a1+2d)2=a1(a1+6d),∴a1=2d,∴公比q===2,故选C.4.若正数a,b,c依次成公比大于1的等比数列,则当x>1时,logax,logbx,logcx()A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列[答案]C[解析]+=logxa+logxc=logx(ac)=logxb2=2logxb=∴,,成等差数列.二、填空题5.(·江苏卷)在各项均为正数的等比数列{an}中,a2=1,a8=a6+2a4,则a6的值是________.[答案]4[解析]本题考查等比数列的通项及性质.设公比为q,因为a2=1,则由a8=a6+2a4得q6=q4+2q2,q4-q2-2=0,解得q2=2,所以a6=a2q4=4.在等比数列中an=am·qn-m.6.已知各项都为正数的等比数列的任何一项都等于它后面相邻两项的和,则该数列的公比q=________.[答案][解析]设该正项等比数列为{an},公比为q,由题意,得an=an+1+an+2=anq+anq2,∴q2+q-1=0, q>0,∴q=.三、解答题7.已知数列{an}的前n项和为Sn,Sn=(an+1)(n∈N+)(1)求a1,a2;(2)求证:数列{an}是等比数列.[解析](1)由S1=(a1+1),得a1=(a1+1)∴a1=.又S2=(a2+1),即a1+a2=(a2+1),解得a2=-.(2)证明:当...