第一章§3第2课时一、选择题1.在等比数列{an}中,a4=6,a8=18,则a12=()A.24B.30C.54D.108[答案]C[解析] a8=a4q4,∴q4===3,∴a12=a8·q4=54.2.在等比数列{an}中,a3=2-a2,a5=16-a4,则a6+a7的值为()A.124B.128C.130D.132[答案]B[解析] a2+a3=2,a4+a5=16,又a4+a5=(a2+a3)q2,∴q2=8.∴a6+a7=(a4+a5)q2=16×8=128.3.已知{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5等于()A.5B.10C.15D.20[答案]A[解析] a=a2a4,a=a4a6,∴a+2a3a5+a=25,∴(a3+a5)2=25,又 an>0,∴a3+a5=5.4.在正项等比数列{an}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于()A.16B.32C.64D.256[答案]C[解析]由已知,得a1a19=16,又 a1·a19=a8·a12=a,∴a8·a12=a=16,又an>0,∴a10=4,∴a8·a10·a12=a=64.5.已知等比数列{an}的公比为正数,且a3·a9=2a,a2=1,则a1=()A.B.C.D.2[答案]B[解析] a3·a9=a,又 a3a9=2a,∴a=2a,∴2=2,∴q2=2, q>0,∴q=.又a2=1,∴a1===.6.在等比数列{an}中,an>an+1,且a7·a11=6,a4+a14=5,则等于()A.B.C.D.6[答案]A[解析] ,解得或.又 an>an+1,∴a4=3,a14=2.∴==.二、填空题7.已知等比数列{an}的公比q=-,则等于________.[答案]-3[解析]===-3.8.等比数列{an}中,an>0,且a5·a6=9,则log3a2+log3a9=________.[答案]2[解析] an>0,∴log3a2+log3a9=log3a2a9=log3a5a6=log39=log332=2.三、解答题9.已知{an}为等比数列,且a1a9=64,a3+a7=20,求a11.[解析] {an}为等比数列,∴a1·a9=a3·a7=64,又a3+a7=20,∴a3,a7是方程t2-20t+64=0的两个根.∴a3=4,a7=16或a3=16,a7=4,当a3=4时,a3+a7=a3+a3q4=20,∴1+q4=5,∴q4=4.当a3=16时,a3+a7=a3(1+q4)=20,∴1+q4=,∴q4=.∴a11=a1q10=a3q8=64或1.10.三数成等比数列,其积为27,其平方和为91,求这三个数.[解析]设三数分别为,a,aq,则由①,得a=3.将a=3代入②得q=±,或q=±3.∴所求三数为-9,3,-1或9,3,1或1,3,9或-1,3,-9.一、选择题1.已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9等于()A.2B.4C.8D.16[答案]C[解析] a3a11=a=4a7, a7≠0,∴a7=4,∴b7=4, {bn}为等差数列,∴b5+b9=2b7=8.2.已知等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,则=()A.1+B.1-C.3+2D.3-2[答案]C[解析]设数列{an}的公比为q,由已知可得a3=a1+2a2⇒q2-2q-1=0,q=1+或1-(舍),则=q2=(1+)2=3+2.3.设{an}是由正数组成的等比数列,公比q=2,且a1·a2·a3·…·a30=230,那么a3·a6·a9·…·a30等于()A.210B.220C.216D.215[答案]B[解析]设A=a1a4a7…a28,B=a2a5a8…a29,C=a3a6a9…a30,则A、B、C成等比数列,公比为q10=210,由条件得A·B·C=230,∴B=210,∴C=B·210=220.4.在数列{an}中,a1=2,当n为奇数时,an+1=an+2;当n为偶数时,an+1=2an-1,则a12等于()A.32B.34C.66D.64[答案]C[解析]依题意,a1,a3,a5,a7,a9,a11构成以2为首项,2为公比的等比数列,故a11=a1×25=64,a12=a11+2=66.故选C.二、填空题5.(·安徽理,12)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.[答案]1[解析]本题考查等差数列,等比数列.设等差数列的首项为a,公差为d,(a3+3)2=(a1+1)(a5+5),即(a1+2d+3)2=(a1+1)(a1+4d+5),化简得(d+1)2=0,∴d=-1,∴q==1.直接进行计算,有时会有比较好的效果.6.已知{an}是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=________.[答案]2[解析]本题主要考查等比数列的基本公式,利用等比数列的通项公式可解得.解析:a4-a3=a2q2-a2q=4,因为a2=2,所以q2-q-2=0,解得q=-1,或q=2.因为an为递增数列,所以q=2.三、解答题7.设{an}是各项均为正数的等比数列,bn=log2an,若b1+b2+b3=3,b1·b2·b3=-3,求此...