5.1平行关系的判定(二)【课时目标】1.理解平面与平面平行的判定定理的含义.2.能运用平面与平面平行的判定定理,证明一些空间面面平行的简单问题.1.平面α与平面β平行是指两平面______公共点.若α∥β,直线aα,则a与β的位置关系为________.2.定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.一、选择题1.经过平面α外的两个点作该平面的平行平面,可以作出()A.0个B.1个C.0个或1个D.1个或2个2.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α内有无数条直线平行于βB.α内不共线三点到β的距离相等C.l、m是平面α内的直线,且l∥α,m∥βD.l、m是异面直线且l∥α,m∥α,l∥β,m∥β3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若不在同一直线上的三点A、B、C到平面α的距离相等,且Aα,则()A.α∥平面ABCB.△ABC中至少有一边平行于αC.△ABC中至多有两边平行于αD.△ABC中只可能有一边与α相交5.两个平面平行的条件是()A.一个平面内一条直线平行于另一个平面B.一个平面内两条直线平行于另一个平面C.一个平面内的任意一条直线平行于另一个平面D.两个平面都平行于同一条直线6.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G二、填空题7.已知直线a、b,平面α、β,且a∥b,a∥α,α∥β,则直线b与平面β的位置关系为________.8.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________(填序号).9.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.三、解答题10.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD1B1.11.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.能力提升12.三棱柱ABC-A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点.求证:平面A1BD1∥平面AC1D.13.如图所示,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?判定或证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行;(3)两个平面同时平行于第三个平面,那么这两个平面平行.5.1平行关系的判定(二)答案知识梳理1.无a∥β作业设计1.C2.D3.B4.B5.C6.A7.b∥β或bβ8.③解析①不正确,当两平面相交时,在一个平面两侧分别有无数点满足条件;②不正确,当平面β与γ相交时也可满足条件;③正确,满足平面平行的判定定理;④不正确,当两平面相交时,也可满足条件.9.M∈线段FH解析 HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连接,有MN∥平面B1BDD1.10.证明如图所示,连接SB,SD, F、G分别是DC、SC的中点,∴FG∥SD.又 SD平面BDD1B1,FG平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又 EG平面EFG,FG平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.11.(1)证明(1)连接BM,BN,BG并延长分别交AC,AD,CD于P,F,H. M,N,G分别为△ABC,△ABD,△BCD的重心,则有===2,且P,H,F分别为AC,CD,AD的中...