电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

最短距离问题分析VIP免费

最短距离问题分析_第1页
1/5
最短距离问题分析_第2页
2/5
最短距离问题分析_第3页
3/5
最短距离问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。利用一次函数和二次函数的性质求最值。一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。几何模型:条件:如图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,求的最小值;解:(1)的最小值是(2)的最小值是【典型例题分析】1.如图所示,正方形的面积为12,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为()A.B.C.3D.2.如图,抛物线2124yxx的顶点为A,与y轴交于点B.(1)求点A、点B的坐标;(2)若点P是x轴上任意一点,求证:PA-PB≤AB;ADEPBCAB′PlABECBD图1BOA·xy第4题OxyBDACP(3)当PA-PB最大时,求点P的坐标.解:(1)令x=0,得y=2,∴B(0,2) 22112(2)344yxxx∴A(-2,3)(2)证明:ⅰ.当点P是AB的延长线与x轴交点时,PA-PB=AB;ⅱ.当点P在x轴上又异于AB的延长线与x轴的交点时,在点P、A、B构成的三角形中,PA-PB<AB.∴综合上述:PA-PB≤AB.(3)作直线AB交x轴于点P由(2)可知:当PA-PB最大时,点P是所求的点作AH⊥OP于H BO⊥OP∴∠BOP=∠AHP,且∠BPO=∠APH∴△BOP∽△AHP∴AHHPBOOP由(1)可知:AH=3、OH=2、OB=2即∴OP=4,∴P(4,0)标为1122,.PED△的周长即是102CEDE..4.一次函数的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.解:(1)将点A、B的坐标代入y=kx+b并计算得k=-2,b=4.∴解析式为:y=-2x+4;(2)设点C关于点O的对称点为C′,连结PC′、DC′,则PC=PC′.∴PC+PD=PC′+PD≥C′D,即C′、P、D共线时,PC+PD的最小值是C′D.连结CD,在Rt△DCC′中,C′D==2;易得点P的坐标为(0,1).(亦可作Rt△AOB关于y轴对称的△)5.已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.BOA·xyPHxyOAFEM'A'MB33解:(1)此抛物线的解析式为(2)连结、.因为的长度一定,所以周长最小,就是使最小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点.设直线的表达式为则解得∴此直线的表达式为把代入得∴点的坐标为7.如图(1),抛物线和轴的交点为为的中点,若有一动点,自点处出发,沿直线运动到轴上的某点(设为点),再沿直线运动到该抛物线对称轴上的某点(设为点),最后又沿直线运动到点,求使点运动的总路程最短的点,点的坐标,并求出这个最短路程的长。解:如图(1`),由题意可得(0,3),,抛物线的对称点为,点关于轴的对称点为,点关于抛物线对称轴的对称点为(6,3)。连结。根据轴对称性及两点间线段最短可知,的长就是所求点运动中最短总路程的长,在直线的方程为(过程略)。设与的交点为则为在轴上所求的点,与直线的交点为所求的F点。可得点的坐标为(2,0),F点的坐标为)。(第24题图)OACxyBEPDACxyBO5题图ACxyBOxyOAFEM由勾股...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

最短距离问题分析

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部