【成才之路】2016年春高中数学第1章数列3等比数列第2课时等比数列的性质同步练习北师大版必修5一、选择题1.等比数列中,a5a14=5,则a8·a9·a10·a11=()A.10B.25C.50D.75[答案]B[解析]a8·a11=a9·a10=a5·a14,∴a8·a9·a10·a11=(a5·a14)2=25.2.在等比数列{an}中,a4=6,a8=18,则a12=()A.24B.30C.54D.108[答案]C[解析] a8=a4q4,∴q4===3,∴a12=a8·q4=54.3.在等比数列{an}中,a3=2-a2,a5=16-a4,则a6+a7的值为()A.124B.128C.130D.132[答案]B[解析] a2+a3=2,a4+a5=16,又a4+a5=(a2+a3)q2,∴q2=8.∴a6+a7=(a4+a5)q2=16×8=128.4.已知{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5等于()A.5B.10C.15D.20[答案]A[解析] a=a2a4,a=a4a6,∴a+2a3a5+a=25,∴(a3+a5)2=25,又 an>0,∴a3+a5=5.5.(2016·济南高二检测)已知{an}是等比数列,a4·a7=-512,a3+a8=124,且公比为整数,则公比q为()A.2B.-2C.D.-[答案]B[解析]a4·a7=a3·a8=-512,又a3+a8=124,所以或因为公比为整数,故q5==-32,q=-2.6.在等比数列{an}中,an>an+1,且a7·a11=6,a4+a14=5,则等于()A.B.C.D.61[答案]A[解析] ,解得或.又 an>an+1,∴a4=3,a14=2.∴==.二、填空题7.公差不为零的等差数列{an}中,2a3-a+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=________.[答案]16[解析] 2a3-a+2a11=2(a3+a11)-a=4a7-a=0, b7=a7≠0,∴b7=a7=4.∴b6b8=b=16.8.等比数列{an}中,an>0,且a5·a6=9,则log3a2+log3a9=________.[答案]2[解析] an>0,∴log3a2+log3a9=log3a2a9=log3a5a6=log39=log332=2.三、解答题9.已知{an}为等比数列,且a1a9=64,a3+a7=20,求a11.[解析] {an}为等比数列,∴a1·a9=a3·a7=64,又a3+a7=20,∴a3,a7是方程t2-20t+64=0的两个根.∴a3=4,a7=16或a3=16,a7=4,当a3=4时,a3+a7=a3+a3q4=20,∴1+q4=5,∴q4=4.当a3=16时,a3+a7=a3(1+q4)=20,∴1+q4=,∴q4=.∴a11=a1q10=a3q8=64或1.10.已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.(1)求通项公式an及Sn;(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式.[解析](1)因为{an}是首项为19,公差为-2的等差数列,所以an=19-2(n-1)=-2n+21,即an=-2n+21;Sn=19n+×(-2)=-n2+20n,即Sn=-n2+20n.(2)因为{bn-an}是首项为1,公比为3的等比数列,所以bn-an=3n-1,即bn=3n-1+an=3n-1-2n+21.一、选择题1.(2015·新课标Ⅱ)已知等比数列满足a1=,a3a5=4(a4-1),则a2=()A.2B.1C.D.[答案]C2[解析]解法一:根据等比数列的性质,结合已知条件求出a4,q后求解. a3a5=a,a3a5=4(a4-1),∴a=4(a4-1),∴a-4a4+4=0,∴a4=2.又 q3===8,∴q=2.∴a2=a1q=×2=,故选C.解法二:直接利用等比数列的通项公式,结合已知条件求出q后求解. a3a5=4(a4-1),∴a1q2·a1q4=4(a1q3-1),将a1=代入上式并整理,得q6-16q3+64=0,解得q=2,∴a2=a1q=,故选C.2.已知等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,则=()A.1+B.1-C.3+2D.3-2[答案]C[解析]设数列{an}的公比为q,由已知可得a3=a1+2a2⇒q2-2q-1=0,q=1+或1-(舍),则=q2=(1+)2=3+2.3.设{an}是由正数组成的等比数列,公比q=2,且a1·a2·a3·…·a30=230,那么a3·a6·a9·…·a30等于()A.210B.220C.216D.215[答案]B[解析]设A=a1a4a7…a28,B=a2a5a8…a29,C=a3a6a9…a30,则A、B、C成等比数列,公比为q10=210,由条件得A·B·C=230,∴B=210,∴C=B·210=220.4.在数列{an}中,a1=2,当n为奇数时,an+1=an+2;当n为偶数时,an+1=2an-1,则a12等于()A.32B.34C.66D.64[答案]C[解析]依题意,a1,a3,a5,a7,a9,a11构成以2为首项,2为公比的等比数列,故a11=a1×25=64,a12=a11+2=66.故选C.二、填空题5.已知{an}是递增等比数列,a2=2,a4-a3=4,...