电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《一次函数的性质》VIP免费

《一次函数的性质》_第1页
1/5
《一次函数的性质》_第2页
2/5
《一次函数的性质》_第3页
3/5
第17章函数及其图象3.一次函数的性质【知识与技能】1.掌握一次函数y=kx+b(k≠0)的性质.2.能根据k与b的值说出函数的有关性质.【过程与方法】经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质的影响【情感态度】观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力【教学重点】掌握一次函数y=kx+b(k≠0)的性质【教学难点】利用一次函数的有关性质解决有关问题一、情境导入,初步认识1.一次函数的图象是什么形状呢?2.正比例函数y=kx(k≠0)的图象是经过哪一点的一条直线?3.画一次函数图象时,只要取几点?4.在同一直角坐标系中画出下列函数的图象.并说出它们有什么关系.y=4xy=4x+2【教学说明】对相关知识进行复习,为本节课的教学做准备.二、思考探究,获取新知探究:一次函数的性质1.在同一直角坐标系中,画出函数y=x+1和y=3x-2的图象.观察图象,回答下列问题:(1)在你所画的一次函数图象中,直线经过几个象限?(2)直线y=x+1的图象上,当一个点在直线上从左向右移动时,(即自变量x从小到大时),点的位置也在逐步从低到高变化,那么函数y的值是如何变化的(3)函数y=3x-2的图象是否也有这种变化?2.在同一坐标系中,画出函数y=-x+2和y=-x-1的图象(图略).根据上面分析的过程,请同学们研究这两个函数图象是否也有相应的变化?你能发现什么规律?【归纳结论】一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;(2)当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.【教学说明】通过观察,总结结论.提高学生观察能力和概括能力.三、运用新知,深化理解1.已知一次函数y=(2m-1)x+m+5,当m是什么数时,函数值y随x的增大而减小?分析:一次函数y=kx+b(k≠0),若k<0,则y随x的增大而减小.解:因为一次函数y=(2m-1)x+m+5,函数值y随x的增大而减小.所以,2m-1<0,即m<.2.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求m的取值范围.分析:一次函数y=kx+b(k≠0),若函数y随x的增大而减小,则k<0,若函数的图象经过二、三、四象限,则k<0,b<0.解:由题意得:1-2m<0m-1<0,解得,0,直线与y轴交于正半轴;当b<0时,直线与y轴交于负半轴;当b=0时,直线与y轴交于坐标原点.2.k>0,b>0时,直线经过一、二、三象限;k>0,b<0时,直线经过一、三、四象限;k<0,b>0时,直线经过一、二、四象限;k<0,b<0时,直线经过二、三、四象限.1.布置作业:教材P50“练习”.2.完成本课时对应练习.本节课的难点是性质的应用,学生都能记住一次函数的性质,但在应用中不能灵活的应用,所以,课后还应该在性质的应用上多花时间,多做练习,使学生都能够掌握.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《一次函数的性质》

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部