电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

复数的概念课件VIP免费

复数的概念课件_第1页
1/29
复数的概念课件_第2页
2/29
复数的概念课件_第3页
3/29
引言:在人和社会的发展过程中,常常需要立足今天,回顾昨天,展望明天。符合客观发展规律的要发扬和完善,不符合的要否定和抛弃。那么,在实数集向复数集发展的过程中,我们应该如何发扬和完善,否定和抛弃呢?数系的扩数系的扩充充自然数整数有理数实数?NZQR用图形表示包含关系:用图形表示包含关系:复习回顾复习回顾知识引入知识引入对于一元二次方程没有实数根.012x我们已知知道:我们已知知道:12x我们能否将实数集进行扩充,使得在新的数我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?集中,该问题能得到圆满解决呢?思考?思考?引入一个新数,叫做虚数单位,并规定:ii(1)它的平方等于-1,即12i虚数单位(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.为了解决负数开方问题,即:将实数a和数i相加记为:a+i;把实数b与数i相乘记作:bi;将它们的和记作:a+bi(a,bR),∈全体复数所组成的集合叫复数集,用字母C表示1.复数:把形如a+bi(a,b∈R)的数叫复数i叫做虚数单位(imaginaryunit)R,,|{babiazzC其中一.复数的有关概念知识讲解知识讲解}虚部b实部a用z表示复数,即z=a+bi(a,b∈R)叫做复数的代数形式2.复数的代数形式:规定:0i=0,0+bi=bi3.复数的分类:复数z=a+bi(a,bR)条件数的类型RC实数集R是复数集C的真子集,虚数b≠0纯虚数a=0且b≠0实数0a=b=0实数b=0复数z=a+bi(a,bR)实数(b=0)虚数(b≠0)纯虚数(a=0)非纯虚数(a≠0)1.说明下列复数是实数还是虚数,还是纯虚数?并说明各数的实部与虚部。31i31i71i2i)1(01iii)32(i2课堂练习实数虚数纯虚数纯虚数纯虚数实数实数虚数虚数2.有下列命题:(1)若a、b为实数,则z=a+bi为虚数(2)若b为实数,则z=bi必为纯虚数(3)若a为实数,则z=a一定不是虚数其中真命题的个数为()(A)0(B)1(C)2(D)3BNZQRCNZQR思考C1.数集N,Z,Q,R,C的关系是怎样的?复数集实数集虚数集纯虚数集2.复数集,实数集,虚数集,纯虚数集之间关系4.两个复数相等有两个复数Z1=a+bi(a,bR∊)和Z2=c+di(c,dR∊)a+bi=c+dia=c且b=d注意1、若Z1,Z2均为实数,则Z1,Z2具有大小关系2、若Z1,Z2中不都为实数,Z1与Z2只有相等或不相等两关系,而不能比较大小5、共轭复数共轭复数一般地,如果两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.,(,)zabiabR设则z=a-bi,(a,bR)例如:5+3i和5-3i互为共轭复数例1:实数m取什么值时,复数是(1)实数?(2)虚数?(3)纯虚数?immz)1(1解:(1)当,即时,复数z是实数.01m1m(2)当,即时,复数z是虚数.01m1m(3)当,且,即时,复数z是纯虚数.01m01m1m例题分析例1(补)m取何实数时,复数z=m2-m-6m+3+(m2-2m-15)i(1)是实数?(2)是虚数?(3)是纯虚数?•[分析]在本题是复数的标准形式下,即z=a+bi(a,b∈R),根据复数的概念,只要对实部和虚部分别计算,总体整合即可.[解析](1)当m2-2m-15=0m+3≠0时,m=5或m=-3m≠-3∴当m=5时,z是实数.(2)当m2-2m-15≠0m+3≠0时,即m≠5且m≠-3m≠-3∴当m≠5且m≠-3时,z是虚数.(3)当m2-m-6=0m+3≠0m2-2m-15≠0时,即m=3或m=-2m≠-3m≠5且m≠-3∴当m=3或m=-2时,z是纯虚数.•[点评]①判断一个含有参数的复数在什么情况下是实数、虚数、纯虚数,首先要保证参数值有意义,如果忽略了实部是含参数的分式中的分母m+3≠0,就会酿成根本性的错误,其次对参数值的取舍,是取“并”还是“交”,非常关键,多与少都是不对的,解答后进行验算是很有必要的.•②对于复数z=a+bi(a,b∈R),既要从整体的角度去认识它,把复数z看成一个整体,又要从实部与虚部的角度分解成两部分去认识它.这是解复数问题的重要思路之一.•(1)下列命题中假命题是()•A.自然数集是非负整数集•B.实数集与复数集交集为实数集•C.实数集与虚数集交集是{0}•D.纯虚数集与实数集交集为空集•[答案]C•[解析]复数可分为实数和虚数两大部分,虚数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

复数的概念课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部