八年级上册13.1轴对称(第1课时)课件说明•本节课从观察生活中的轴对称现象出发,通过生活中平面图形的实例,抽象概括出轴对称图形的本质特征,并结合具体的生活中的图形,类比得出两个图形成轴对称的概念.在此基础上,通过探索成轴对称的两个图形的对称轴与对应点所连线段之间的关系获得了性质,并类比其过程,得到轴对称图形的性质.•本节课从观察生活中的轴对称现象出发,通过生活中平面图形的实例,抽象概括出轴对称图形的本质特征,并结合具体的生活中的图形,类比得出两个图形成轴对称的概念.在此基础上,通过探索成轴对称的两个图形的对称轴与对应点所连线段之间的关系获得了性质,并类比其过程,得到轴对称图形的性质.•学习目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.•学习重点:轴对称的概念和性质.课件说明引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!引出新知探索新知问题1如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?追问你能举出一些轴对称图形的例子吗?探索新知如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.图形形状是否轴对称图形对称轴的数量(条)长方形正方形平行四边形等腰三角形圆形是是是是不是241无数-------填一填(1)有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。(2)对称轴通常画成虚线,是直线,不能画成线段。对称轴问题共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.探索新知问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?追问1你能再举出一些两个图形成轴对称的例子吗?探索新知把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.1.成轴对称的两个图形全等吗?()2.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?()这两个图形对称吗?()3.两全等图形()是轴对称图形。全等全等对称思考不一定两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?CompanyLogo比较归纳轴对称图形两个图形成轴对称区别____个图形_____个图形联系1.沿一条直线折叠,直线两旁的部分能够___________.2.都有__________.3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线___;如果把两个成轴对称的图形看成一个图形,那么这个图形就是_____________.一两互相重合对称轴对称轴对称图形2、如图,其中是轴对称图形的是()3、图中的图形中是常见的安全标记,其中是轴对称图形的是()BAC4、如图所示,图中不是轴对称图形的是()ABCD8、如图所示的图案中,是轴对称图形且有两条对称轴的是()6、下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、角D、平行四边形CD7、从汽车的后视镜中看见某车的车牌的后5位号号码是,该车牌的后5位号码实际是________5、下列英文字母属于轴对称...