专题一函数图象与性质的综合应用基础知识自主学习要点梳理1.函数的性质(1)函数的性质是高考的必考内容,它是函数知识的核心部分.函数的性质包括函数的定义域、值域、单调性、奇偶性、周期性、对称性与最大值、最小值等,在历年的高考试题中函数的性质都占有非常重要的地位.(2)考查函数的定义域、值域的题型,一般是通过具体的问题(实际应用题与几何问题)找出函数的关系式,再研究函数的定义域与值域.(3)中档题常考题型利用函数的性质比较函数值的大小、求函数值、解不等式、求二次函数的最值问题,同时也考查考生能否用运动变化的观点观察问题、分析问题、解决问题.(4)函数的最值问题在高考试题中几乎年年出现,它是高考中的重要题型之一,特别是函数在经济生活中的应用问题,大多数都是最值问题,所以要掌握求函数最值的几种常用方法与技巧,灵活、准确地列出函数模型.2.函数的图象(1)函数图象是高考的必考内容,其中作图、识图、用图也是学生必须掌握的内容.(2)作图一般有两种方法:描点法、图象变换法.特别是图象变换法,有平移变换、伸缩变换和对称变换,要记住它们的变换规律.(3)识图时,要留意它们的变化趋势,与坐标轴的交点及一些特殊点,特别是对称性、周期性等特点,应引起足够的重视.(4)用图,主要是数形结合思想的应用.题型分类深度剖析题型一函数求值例1已知f(x)=2txx<2,logtx2-1x≥2,若f(2)=1,则f[f(5)]=________.思维启迪先利用f(2)=1求出t的值,然后由里到外,逐层求解,先求f(5),再求f[f(5)].解析因2≥2,所以f(2)=logt(22-1)=logt3=1,解得t=3.因为5>2,所以f(5)=log3[(5)2-1]=log34,显然log34
0时,则有f(x)≤0=f(2),由f(x)在(0,+∞)上单调递增可得x≤2;当x<0时,则有f(x)≥0=-f(2)=f(-2),由函数f(x)为奇函数可得f(x)在(-∞,0)上单调递增,所以x≥-2.所以不等式的解集为[-2,0)∪(0,2].D探究提高解决抽象函数问题的关键是灵活利用抽象函数的性质,利用函数的单调性去掉函数符号是解决问题的关键,由函数为奇函数可知,不等式的解集关于原点对称,所以只需求解x>0时的解集即可.变式训练2已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是__________.解析 f(x)是奇函数,∴当x<0时,f(x)=-x2+2x,作出f(x)的大致图象如图中实线所示,结合图象可知f(x)是R上的增函数,由f(2-a2)>f(a),得2-a2>a,即-2