实用文档-1-三角形“四心”向量形式的充要条件应用知识点总结1.O是的重心;若O是的重心,则故;1()3PGPAPBPCG为ABC的重心.2.O是的垂心;若O是(非直角三角形)的垂心,则故3.O是的外心(或)若O是的外心则故4.O是内心的充要条件是引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成,O是内心的充要条件也可以是。若O是的内心,则故;||||||0ABPCBCPACAPBP是ABC的内心;向量()(0)||||ACABABAC所在直线过ABC的内心(是BAC的角平分线所在直线);ABC0OCOBOAABCABCAOBAOCBOCS31SSS0OCOBOAABCOAOCOCOBOBOAABCCtanBtanAtanSSSAOBAOCBOC::::0OCCtanOBBtanOAAtanABC|OC||OB||OA|222OCOBOAABCC2sin:B2sin:A2sinAOBsinAOCsinBOCsinSSSAOBAOCBOC::::0OCC2sinOBB2sinOAA2sinABC0)|CB|CB|CA|CA(OC)|BC|BC|BA|BA(OB)ACAC|AB|AB(OACA,BC,AB321e,e,eABC0)ee(OC)ee(OB)ee(OA322131ABC0OCcOBbOAaABCcbaSSSAOBAOCBOC::::0OCCsinOBBsinOAAsin0OCcOBbOAa或ACBP实用文档-2-范例(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足)(ACACABABOAOP,,0则P点的轨迹一定通过ABC的()(A)外心(B)内心(C)重心(D)垂心解析:因为ABAB是向量AB的单位向量设AB与AC方向上的单位向量分别为21ee和,又APOAOP,则原式可化为)(21eeAP,由菱形的基本性质知AP平分BAC,那么在ABC中,AP平分BAC,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2.H是△ABC所在平面内任一点,HAHCHCHBHBHA点H是△ABC的垂心.由ACHBACHBHAHCHBHCHBHBHA00)(,同理ABHC,BCHA.故H是△ABC的垂心.(反之亦然(证略))例3.(湖南)P是△ABC所在平面上一点,若PAPCPCPBPBPA,则P是△ABC的(D)A.外心B.内心C.重心D.垂心解析:由0PCPBPBPAPCPBPBPA得.即0,0)(CAPBPCPAPB即则ABPCBCPACAPB,,同理所以P为ABC的垂心.故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4.G是△ABC所在平面内一点,GCGBGA=0点G是△ABC的重心.证明作图如右,图中GEGCGB连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线.实用文档-3-将GEGCGB代入GCGBGA=0,得EGGA=0GDGEGA2,故G是△ABC的重心.(反之亦然(证略))例5.P是△ABC所在平面内任一点.G是△ABC的重心)(31PCPBPAPG.证明CGPCBGPBAGPAPG)()(3PCPBPACGBGAGPG∵G是△ABC的重心∴GCGBGA=0CGBGAG=0,即PCPBPAPG3由此可得)(31PCPBPAPG.(反之亦然(证略))例6若O为ABC内一点,0OAOBOC,则O是ABC的()A.内心B.外心C.垂心D.重心解析:由0OAOBOC得OBOCOA,如图以OB、OC为相邻两边构作平行四边形,则OBOCOD,由平行四边形性质知12OEOD,2OAOE,同理可证其它两边上的这个性质,所以是重心,选D。(四)将平面向量与三角形外心结合考查例7若O为ABC内一点,OAOBOC,则O是ABC的()A.内心B.外心C.垂心D.重心解析:由向量模的定义知O到ABC的三顶点距离相等。故O是ABC的外心,选B。(五)将平面向量与三角形四心结合考查例8.已知向量1OP,2OP,3OP满足条件1OP+2OP+3OP=0,|1OP|=|2OP|=|3OP|=1,求证△P1P2P3是正三角形.(《数学》第一册(下),复习参考题五B组第6题)证明由已知1OP+2OP=-3OP,两边平方得1OP·2OP=21,同理2OP·3OP=3OP·1OP=21,