3.2导数的应用考点一导数与函数的单调性1.(2013浙江,8,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f'(x)的图象如图所示,则该函数的图象是()答案B2.(2013天津,20,14分)设a∈[-2,0],已知函数f(x)=(1)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;(2)设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0.证明x1+x2+x3>-.证明(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x≥0),①f'1(x)=3x2-(a+5),由a∈[-2,0],从而当-11时,f'2(x)>0.即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f'(x)在区间(-∞,0)内单调递减,在区间内单调递减,在区间内单调递增.因为曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f'(x1)=f'(x2)=f'(x3).不妨设x1<0-+,设t=,则a=,因为a∈[-2,0],所以t∈,故x1+x2+x3>-t+=(t-1)2-≥-,即x1+x2+x3>-.3.(2013湖北,21,13分)设a>0,b>0,已知函数f(x)=.(1)当a≠b时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f,f是否成等比数列,并证明f≤f;1(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.解析(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f'(x)==.当a>b时,f'(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增;当a0,f=>0,f=>0,故f(1)f=·=ab=,即f(1)f=.①所以f(1),f,f成等比数列.因为≥,所以f(1)≥f.由①得f≤f.(ii)由(i)知f=H,f=G.故由H≤f(x)≤G,得f≤f(x)≤f.②当a=b时,f=f(x)=f=a.这时,x的取值范围为(0,+∞);当a>b时,0<<1,从而<,由f(x)在(0,+∞)上单调递增与②式,得≤x≤,即x的取值范围为;当a1,从而>,由f(x)在(0,+∞)上单调递减与②式,得≤x≤,即x的取值范围为.考点二导数与函数的极值与最值4.(2013福建,12,5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案D5.(2013课标全国Ⅰ,20,12分)已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解析(1)f'(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4,f'(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知f(x)=4ex(x+1)-x2-4x,f'(x)=4ex(x+2)-2x-4=4(x+2).令f'(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f'(x)>0;当x∈(-2,-ln2)时,f'(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).6.(2013浙江,21,15分)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.2(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解析(1)当a=1时,f'(x)=6x2-12x+6,所以f'(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f'(x)=6x2-6(a+1)x+6a=6(x-1)(x-a).令f'(x)=0,得到x1=1,x2=a.当a>1时,x0(0,1)1(1,a)a(a,2a)2af'(x)+0-0+f(x)0单调递增极大值3a-1单调递减极小值a2(3-a)单调递增4a3比较f(0)=0和f(a)=a2(3-a)的大小可得g(a)=当a<-1时,x0(0,1)1(1,-2a)-2af'(x)-0+f(x)0单调递减极小值3a-1单调递增-28a3-24a2得g(a)=3a-1.综上所述,f(x)在闭区间[0,2|a|]上的最小值为g(a)=考点三导数的综合应用7.(2013课标全国Ⅱ,11,5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)...