电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(浙江专用)高考数学一轮复习 板块命题点专练(十三)圆锥曲线(含解析)-人教版高三全册数学试题VIP免费

(浙江专用)高考数学一轮复习 板块命题点专练(十三)圆锥曲线(含解析)-人教版高三全册数学试题_第1页
1/9
(浙江专用)高考数学一轮复习 板块命题点专练(十三)圆锥曲线(含解析)-人教版高三全册数学试题_第2页
2/9
(浙江专用)高考数学一轮复习 板块命题点专练(十三)圆锥曲线(含解析)-人教版高三全册数学试题_第3页
3/9
板块命题点专练(十三)圆锥曲线命题点一椭圆1.(2018·全国卷Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.解析:选D如图,作PB⊥x轴于点B.由题意可设|F1F2|=|PF2|=2,则c=1.由∠F1F2P=120°,可得|PB|=,|BF2|=1,故|AB|=a+1+1=a+2,tan∠PAB===,解得a=4,所以e==.2.(2018·浙江高考)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足AP=2PB,则当m=________时,点B橫坐标的绝对值最大.解析:设A(x1,y1),B(x2,y2),由AP=2PB,得即x1=-2x2,y1=3-2y2.因为点A,B在椭圆上,所以解得y2=m+,所以x=m-(3-2y2)2=-m2+m-=-(m-5)2+4≤4,所以当m=5时,点B横坐标的绝对值最大.答案:53.(2018·全国卷Ⅰ)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.解:(1)由已知得F(1,0),l的方程为x=1.则点A的坐标为或.又M(2,0),所以直线AM的方程为y=-x+或y=x-,即x+y-2=0或x-y-2=0.(2)证明:当l与x轴重合时,∠OMA=∠OMB=0°.当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为kMA+kMB=+.由y1=kx1-k,y2=kx2-k,得kMA+kMB=.将y=k(x-1)代入+y2=1,得(2k2+1)x2-4k2x+2k2-2=0,所以x1+x2=,x1x2=.则2kx1x2-3k(x1+x2)+4k==0.从而kMA+kMB=0,故MA,MB的倾斜角互补.1所以∠OMA=∠OMB.综上,∠OMA=∠OMB成立.4.(2018·天津高考)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|·|AB|=6.(1)求椭圆的方程.(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q,若=sin∠AOQ(O为原点),求k的值.解:(1)设椭圆的焦距为2c,由已知有=,又由a2=b2+c2,可得2a=3b.①由已知可得|FB|=a,|AB|=b,又|FB|·|AB|=6,可得ab=6.②联立①②解得a=3,b=2.所以椭圆的方程为+=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2.又因为|AQ|=,而∠OAB=,所以|AQ|=y2.由=sin∠AOQ,可得5y1=9y2.由方程组消去x,可得y1=.易知直线AB的方程为x+y-2=0,由方程组消去x,可得y2=.由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2-50k+11=0,解得k=或k=.所以k的值为或.5.(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:|FA|,|FP|,|FB|成等差数列,并求该数列的公差.解:(1)证明:设A(x1,y1),B(x2,y2),则+=1,+=1.两式相减,并由=k得+·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.(2)由题意得F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P,|FP|=,于是|FA|===2-.2同理|FB|=2-.所以|FA|+|FB|=4-(x1+x2)=3.故2|FP|=|FA|+|FB|,即|FA|,|FP|,|FB|成等差数列.设该数列的公差为d,则2|d|=|FB|-|FA|=|x1-x2|=.②将m=代入①得k=-1,所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.命题点二双曲线1.(2018·全国卷Ⅱ)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x解析:选A e===,∴a2+b2=3a2,∴b=a.∴渐近线方程为y=±x.2.(2018·全国卷Ⅲ)设F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为()A.B.2C.D.解析:选C法一:不妨设...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(浙江专用)高考数学一轮复习 板块命题点专练(十三)圆锥曲线(含解析)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部