电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

1.2独立性检验的基本思想及其初步应用-(2)VIP免费

1.2独立性检验的基本思想及其初步应用-(2)_第1页
1/23
1.2独立性检验的基本思想及其初步应用-(2)_第2页
2/23
1.2独立性检验的基本思想及其初步应用-(2)_第3页
3/23
第一章统计案例1.2独立性检验的基本思想及其应用学习目标•[1]结合生活中的实例了解分类变量的概念,了解列联表和等高条形图的特点•[2]通过实例,让学生了解独立性性检验的基本思想及其初步应用•[3]理解独立性检验的基本思想,会根据K2的观测值得大小判断两个分类变量有关的可信度2定量变量——回归分析(画散点图、相关系数r、变量相关指数R、残差分析)分类变量——研究两个变量的相关关系:定量变量:体重、身高、温度、考试成绩等等。变量分类变量:性别、是否吸烟、是否患肺癌、宗教信仰、国籍等等。两种变量:独立性检验本节研究的是两个分类变量的独立性检验问题。在日常生活中,我们常常关心分类变量之间是否有关系:例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等。复习引入复习引入吸烟与肺癌列联表不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)列联表在不吸烟者中患肺癌的比重是在吸烟者中患肺癌的比重是说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。0.54%2.28%探究新知探究新知吸烟与肺癌列联表不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965类似于上面的表格,我们称分类变量的汇总统计表为列联表,一般我们只研究两个分类变量只取两个值,这样的列联表称作2×2列联表.探究新知探究新知不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表通过图形直观判断两个分类变量是否相关:探究新知探究新知不患肺癌患肺癌总计不吸烟99.46%0.54%1吸烟97.72%2.28%1不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表通过图形直观判断两个分类变量是否相关:2、等高条形图不吸烟吸烟00.10.20.30.40.50.60.70.80.91不吸烟吸烟患肺癌比例不患肺癌比例等高条形图更清晰地表达了两种情况下患肺癌的比例。探究新知探究新知上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?这需要用统计观点来考察这个问题。现在想要知道能够以多大的把握认为“吸烟与患肺癌有关”,为此先假设用A表示不吸烟,B表示不患肺癌,则“吸烟与患肺癌没有关系”等价于“吸烟与患肺癌独立”,即假设H0等价于P(AB)=P(A)P(B).探究新知探究新知因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强。不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+dadbc即aa+ba+c≈×nnna+bP(A),na+cP(B),n.aP(AB)n其中为样本容量,即n=a+b+c+d在表中,a恰好为事件AB发生的频数;a+b和a+c恰好分别为事件A和B发生的频数。由于频率接近于概率,所以在H0成立的条件下应该有(a+b+c+d)a(a+b)(a+c),探究新知探究新知为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量-----卡方统计量22(),()()()()其中为样本容量。nadbcKabcdacbdnabcd(1)根据表3-7中的数据,利用公式(1)计算得到K2的观测值为:那么这个值到底能告诉我们什么呢?242209956.63278172148987491k9965(777549)(2)独立性检验在H0成立的情况下,统计学家估算出如下的概率即在H0成立的情况下,K2的值大于6.635的概率非常小,近似于0.01。2(6.635)0.01.PK(2)也就是说,在H0成立的情况下,对随机变量K2进行多次观测,观测值超过6.635的频率约为0.01。思考206.635?KH如果,就断定不成立,这种判断出错的可能性有多大答:判断出错的概率为0.01。20099657775494220995663278172148987491().kHH现在观测值太大了,在成立的情况下能够出现这样的观测值的概率不超过0.01,因此我们有99%的把握认为不成立,即有99%的把握认为“吸烟与患肺癌有关系”。探究新知探究新知独立性检验的基本思想(类似反证法)(1)假设结论不成立,即“两个分类变量没有关系”.0:H(2)在此假设下我们所构造的随机变量K2应该很小,如果由观测数据计...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

1.2独立性检验的基本思想及其初步应用-(2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部