课时作业10生活中的优化问题举例知识点一面积、容积最大(小)问题1.把长度为16的线段分成两段,各围成一个正方形,它们的面积和的最小值为()A.2B.4C.6D.8答案D解析设其中一段长为x,则另一段长为16-x,则两个正方形面积之和为S(x)=2+2(00.∴x=8是函数S(x)的极小值点,也是最小值点.∴当x=8时,S(x)取最小值,S(x)最小=S(8)=8,即两个正方形面积之和的最小值是8,故选D.知识点二材料最省问题2.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,它的高与底面半径之比为()A.2∶1B.1∶2C.1∶4D.4∶1答案A解析设其体积为V,高与底面半径分别为h,r,则V=πr2h,即h=.由题意,知当表面积S最小时所用材料最省.S=2πr2+2πrh=2πr2+2πr·=2πr2+.令S′=4πr-=0,得r=,当r=时,h==,则h∶r=2∶1时,所用材料最省.知识点三利润最大问题3.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的定价为________元时,利润最大.答案115解析利润为S(x)=(x-30)(200-x)=-x2+230x-6000,S′(x)=-2x+230,由S′(x)=0,得x=115,这时利润达到最大.即每件商品的定价为115元时,利润最大.4.某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6lnb=0,解得a=2,b=1.(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).设投入经销B商品的资金为x万元(00,函数S(x)单调递增;当20),S′=2x-,令S′=0,则x=8.当08时S′>0,故x=8时S最小.2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.0486,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.0486),若使银行获得最大收益,则x的取值为()A.0.0162B.0.0324C.0.0243D.0.0486答案B解析依题意,得存款量是kx2,银行支付的利息是kx3,获得的贷款利息是0.0486kx2,其中x∈(0,0.0486).所以银行的收益是y=0.0486kx2-kx3(00;当0.0324400时,P′<0恒成立,易知当x=300时,总利润最大.4.用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边形折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为()A.6cmB.8cmC.10c...