电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

培优材料(1)VIP免费

培优材料(1)_第1页
1/5
培优材料(1)_第2页
2/5
培优材料(1)_第3页
3/5
培优材料(1)1.(2012•永州)如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作PH⊥l,H为垂足.(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;(2)请直接写出使y<0的对应的x的取值范围;(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.考点:二次函数综合题。1444826专题:压轴题。分析:(1)根据二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),待定系数法求出a和b的值,抛物线的解析式即可求出;(2)令y=ax2+bx﹣1=0,解出x的值,进而求出使y<0的对应的x的取值范围;(3)分别求出当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.然后观察其规律,再进行证明;(4)由(3)知OP=OH,只要OH=OP成立,△POH为正三角形,求出|OP|、|OH|含有m和n的表达式,令两式相等,求出m和n的值.解答:解:(1)∵二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),∴,解得a=,b=0,∴二次函数的解析式为y=x2﹣1,(2)令y=x2﹣1=0,解得x=﹣4或x=4,由图象可知当﹣4<x<4时y<0,(3)当m=0时,|PO|2=1,|PH|2=1;当m=2时,P点的坐标为(2,0),|PO|2=4,|PH|2=4,当m=4时,P点的坐标为(4,3),|PO|2=25,|PH|2=25,由此发现|PO|2=|PH|2,设P点坐标为(m,n),即n=m2﹣1|OP|=,|PH|2=n2+4n+4=n2+m2,故对于任意实数m,|PO|2=|PH|2;(4)由(3)知OP=PH,只要OH=OP成立,△POH为正三角形,设P点坐标为(m,n),|OP|=,|OH|=,|OP|=|OH|,即n2=4,解得n=±2,当n=﹣2时,n=m2﹣1不符合条件,故n=2,m=±2时可使△POH为正三角形.2.(2012铜仁)如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.考点:二次函数综合题。解答:解:(1):由题意得,A(3,0),B(0,3)∵抛物线经过A、B、C三点,∴把A(3,0),B(0,3),C(1,0)三点分别代入得方程组解得:∴抛物线的解析式为(2)由题意可得:△ABO为等腰三角形,如图所示,若△ABO∽△AP1D,则∴DP1=AD=4,∴P1(21世纪教育网版权所有)若△ABO∽△ADP2,过点P2作P2M⊥x轴于M,AD=4,∵△ABO为等腰三角形,∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2=P2M,即点M与点C重合∴P2(1,2)(3)如图设点E,则①当P1(-1,4)时,S四边形AP1CE=S三角形ACP1+S三角形ACE=∴∴∵点E在x轴下方∴代入得:,即∵△=(-4)2-4×7=-12<0∴此方程无解②当P2(1,2)时,S四边形AP2CE=S三角形ACP2+S三角形ACE=21世纪教育网∴∴∵点E在x轴下方∴代入得:即,∵△=(-4)2-4×5=-4<0∴此方程无解综上所述,在x轴下方的抛物线上不存在这样的点E。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

培优材料(1)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部