万有引力定律及其应用一、开普勒三定律1.某行星绕太阳沿椭圆轨道运行,它的近日点到太阳的距离为r,远日点到太阳的距离为R,若行星经过近日点的速度大小为vA,求该行星经过远日点时速度大小.2.我国在实现卫星绕月之后,又将实现第二期工程目标,即发射了航天器着陆到月球上.航天器抵达月球的附近时,先绕月球做半径为R的圆周运动,假设其运行周期为T。当航天器快运动到A点时地面控制中心将发出指令,使其速率降低到适当数值,从而使航天器沿着以月心为焦点的椭圆轨道运动,椭圆和月球表面在B点相切,如图所示,这样就可实现航天器在月球的表面登陆.如果月球半径为R0,求飞船由A点到B点所需要的时间.13二、万有引力定律(1)内容:(2)公式:(3)适用条件:3.如图所示,阴影区域是质量为M、半径为R的球体挖去一个小圆球后的剩余部分.所挖去的小圆球的球心O′和大球体球心O间的距离是R/2.求球体剩余部分对球体外离球心O距离为2R、质量为m的质点P的引力.4.(2009•浙江理综)在讨论地球潮汐的成因时,地球绕太阳的运行轨道与月球绕地球的运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是()A.太阳引力远大于月球引力B.太阳引力与月球引力相差不大C.月球对不同区域海水的吸引力大小相等D.月球对不同区域海水的吸引力大小有差异5.关于万有引力公式F=G,以下说法中正确的是()A.公式只适用于星球之间的引力计算,不适用于质量较小的物体B.当两物体间的距离趋近于0时,万有引力趋近于无穷大C.两物体间的万有引力也符合牛顿第三定律D.公式中引力常量G的值是牛顿规定的6.(多选)由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比,例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E=,在引力场中可以用一个类似的物理量来反映各点引力场的强弱.设地球质量为M,半径为R,地球表面处重力加速度为g,引力常量为G,如果一个质量为m的物体位于距离地心2R处的某点,则下列表达式中能反映该点引力场强弱的是()A.GB.GC.GD.7.(2013·江苏高考)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积8.(2013·福建高考)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视作半径为r的圆.已知万有引力常量为G,则描述该行星运动的上述物理量满足()A.GM=B.GM=C.GM=D.GM=三、万有引力与重力的关系141.重力2、天体表面重力加速度问题9.(2009•江苏)英国《新科学家(NewScientist)》杂志评选出了2008年度世界8项科学之最,在XTEJ1650—500双星系统中发现的最小黑洞位列其中,若某黑洞的半径R约为45km,质量M和半径R的关系满足MR=C22G(其中c为光速,G为引力常量),则该黑洞表面重力加速度的数量级为(C)10.(2009•全国Ⅱ)如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向:当存在空腔时,该地区重力加速度的大小和方向会与正常情况下有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),PQ=x,求空腔所引起的Q点处的重力加速度反常;(2)若在水平地面上半径为L的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔...