B′ABCEOxy中考数学压轴专题翻折类1、如图10,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是_______.2、如图11,□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_______.3、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是()A.(23,23)B.(23,3)C.(23,23)D.(21,23)4、(06临汾)如图,将矩形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处.若AFD△的周长为9,ECF△的周长为3,则矩形ABCD的周长为________.5、(2010上海金山)如图2,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是.4、(08十堰)如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:ΔABF≌ΔEDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.解:⑴证明:由折叠可知,C.EED,CD⋯⋯1分在矩形ABCD中,C,ACD,AB∴E.AEDAB, ∠AFB=∠EFD,∴△AFB≌△EFD.⋯⋯⋯⋯⋯⋯⋯⋯4分⑵四边形BMDF是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯5分理由:由折叠可知:BF=BM,DF=DM.⋯⋯⋯⋯6分由⑴知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.⋯⋯⋯⋯⋯⋯⋯7分1、(08枣庄)如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE,已知tan∠OB′C=34.(1)求B′点的坐标;(2)求折痕CE所在直线的解析式.解:(1)在Rt△B′OC中,tan∠OB′C=34,OC=9,FEDCBA图10DABCEF图11DABCFECDBAM第22题图FEC/BDCA图2∴934OB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分解得OB′=12,即点B′的坐标为(12,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)将纸片翻折后,点B恰好落在x轴上的B′点,CE为折痕,∴△CBE≌△CB′E,故BE=B′E,CB′=CB=OA.由勾股定理,得CB′=22OBOC=15.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分设AE=a,则EB′=EB=9-a,AB′=AO-OB′=15-12=3.由勾股定理,得a2+32=(9-a)2,解得a=4.∴点E的坐标为(15,4),点C的坐标为(0,9).···········································5分设直线CE的解析式为y=kx+b,根据题意,得9,415.bkb⋯⋯⋯⋯⋯6分解得9,1.3bk∴CE所在直线的解析式为y=-13x+9.⋯⋯⋯⋯⋯⋯⋯8分2、(09益阳)如图11,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.解析:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF················································1分∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°·········································································································3分又 AD⊥BC∴∠E=∠ADB=90°∠F=∠ADC=90°·······································································4分又 AE=AD,AF=AD∴AE=AF·····································································································...