第14课函数模型及其应用(本课对应学生用书第26-28页)自主学习回归教材1.数学模型及数学建模数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学建模是把实际问题加以抽象概括,建立相应的模型,利用这些模型来研究实际问题的一般数学方法.2.常见的函数模型:①一次函数,②二次函数,③指(对)数函数,④其他函数.3.解函数应用题时,要注意四个步骤:第一步:阅读理解.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么、求什么,从中提炼出相应的数学问题.第二步:引入数学符号,建立数学模型.一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量,并用x,y和辅助变量表示各相关量,然后根据已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个函数问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学方法对得到的常规函数问题(即数学模型)予以解答,求得结果.第四步:将所得结果再转译成具体问题的解答.1.(必修1P31习题3改编)用长度为L(m)的篱笆围建一个一面靠墙的矩形鸡舍,如果挨着墙的边长为x(m),鸡舍面积为y(m2),请把y表示成x的函数:.[答案]y=-2x2+Lx,0