质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学直线方程与两条直线的位置关系直线与圆专题Ⅰ-12数学Ⅰ必做题部分一、基础知识要记牢直线与直线的位置关系的判定方法:(1)给定两条直线l1:y=k1x+b1和l2:y=k2x+b2,则有下列结论:质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学l1∥l2⇔k1=k2且b1≠b2;l1⊥l2⇔k1·k2=-1.(2)若给定的方程是一般式,即l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,则有下列结论:l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0;l1⊥l2⇔A1A2+B1B2=0.二、经典例题领悟好[例1](1)(2013·常州模拟)已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则实数m的值为________.(2)(2013·无锡模拟)已知点A(-1,0),B(cosα,sinα),且|AB|=3,则直线AB的方程为________.质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学[解析](1)根据斜率计算公式可得4-mm--2=-2,解得m=-8.(2)|AB|=cosα+12+sin2α=2+2cosα=3,所以cosα=12,sinα=±32,所以kAB=±33,即直线AB的方程为y=±33(x+1),所以直线AB的方程为y=33x+33或y=-33x-33.[答案](1)-8(2)y=33x+33或y=-33x-33质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学(1)求解两条直线平行的问题时,在利用A1B2-A2B1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.(2)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(3)在解决问题的过程中,要注意选择直线方程的形式,用待定系数法求直线的方程,是最基本最常用的方法.质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学三、预测押题不能少1.(1)将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为________________.解析:逆时针旋转90°后与原来直线垂直,所以其方程为y=-13x,向右平移1个单位后得直线的方程为y=-13(x-1),即直线方程为y=-13x+13.答案:y=-13x+13质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学(2)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的________条件.解析:当a=1时,直线l1:x+2y-1=0,直线l2:x+2y+4=0,则l1∥l2;若l1∥l2,则有a(a+1)-2×1=0,即a2+a-2=0,解得a=-2或a=1,所以不能得到a=1.答案:充分不必要质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学圆的方程一、基础知识要记牢(1)标准方程:(x-a)2+(y-b)2=r2,圆心坐标为(a,b),半径为r.(2)一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心坐标为-D2,-E2,半径r=D2+E2-4F2.质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学二、经典例题领悟好[例2](1)(2013·江西高考)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是________.(2)(2013·常州模拟)抛物线y2=4x与过其焦点且垂直于x轴的直线相交于A,B两点,其准线与x轴的交点为M,则过M,A,B三点的圆的标准方程是____________________________.质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学[解析](1)因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m).又因为圆与直线y=1相切,所以4-22+0-m2=|1-m|,所以m2+4=m2-2m+1,解得m=-32,所以圆的方程为(x-2)2+y+322=254.(2)由抛物线方程及题意知A(1,2),B(1,-2),M(-1,0),质量铸就品牌品质赢得未来首页上一页下一页末页结束数学Ⅰ必做题部分专题Ⅰ-12直线与圆数学设所求圆的方程为x2+y2+Dx+Ey+F=0,所以...