电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

28.1锐角三角函数(2)VIP免费

28.1锐角三角函数(2)_第1页
1/13
28.1锐角三角函数(2)_第2页
2/13
28.1锐角三角函数(2)_第3页
3/13
练习2254AC35B2、在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sinOAB∠等于____.3、在RtABC△中,∠C=90°,AD是BC边上的中线,AC=2,BC=4,则sinDAC=___.∠4、在RtABC△中,C=90°∠,,则sinA=___.∠33ba1、如图,求sinA和sinB的值.5、如图,在△ABC中,AB=CB=5,sinA=,求△ABC的面积。54BAC55复习与探究:1.锐角正弦的定义在中,RtABCC90ABCabc∠A的正弦:caABBC斜边A的对边sinA2、当锐角A确定时,∠A的对边与斜边的比就随之确定。此时,其他边之间的比是否也随之确定?为什么?28.1锐角三角函数(2)——余弦正切学习目标1、掌握余弦、正切的概念2、会计算余弦、正切的值新知探索:ABCabc1、你能将“其他边之比”用比例的式子表示出来吗?这样的比有多少?cbba2、当锐角A确定时,∠A的邻边与斜边的比,∠A的对边与邻边的比也随之确定吗?为什么?交流并说出理由。方法一:从特殊到一般,仿照正弦的研究过程;方法二:根据相似三角形的性质来说明。如图,在Rt△ABC中,∠C=90°,cbAA斜边的邻边cosABC斜边c对边a邻边b★我们把锐角A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即★我们把锐角A的对边与邻边的比叫做∠A的正切(tangent),记作tanA,即baAAA的邻边的对边tanrldmm8989889注意cosA,tanA是一个完整的符号,它表示∠A的余弦、正切,记号里习惯省去角的符号“∠”;cosA,tanA没有单位,它表示一个比值,即直角三角形中∠A的邻边与斜边的比、对边与邻边的比;cosA不表示“cos”乘以“A”,tanA不表示“tan”乘以“A”rldmm8989889对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数。同样地,cosA,tanA也是A的函数。cbAA斜边的邻边cosbaAAA的邻边的对边tancaAA斜边的对边sin锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.rldmm8989889ABC6.34tan54cos,8610.10356sinsin2222BCACBABACABCABACABCABABBCA,又,解:例1如图,在Rt△ABC中,∠C=90°,BC=6,,求cosA和tanB的值.53sinArldmm8989889例2如图,在Rt△ABC中,∠C=90°,BC=2,AB=3,求∠A,∠B的正弦、余弦、正切值..25tan32cos35sin.55252tan35cos32sin,5232222BCACBABBCBABACBACBCAABACAABBCABCABACABCRt,,,,中,解:在ABC23延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值有什么规律吗?结论:一个锐角的正弦等于它余角的余弦,或一个锐角的余弦等于它余角的正弦。rldmm8989889练习课本P78练习1,2,3.补充练习1、在等腰△ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.ABCDrldmm8989889补充练习2、如图所示,在△ABC中,∠ACB=90°,AC=12,AB=13,∠BCM=BAC∠,求sinBAC∠和点B到直线MC的距离.MCBA3、如图所示,CD是RtABC△的斜边AB上的高,求证:.2BDABBCDCBA

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

28.1锐角三角函数(2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部