学习方法报数学周刊国家级优秀教辅读物ISO9001国际质量管理体系认证人教课标八年级上册公式法你能将多项式a2+2ab+b2与a2-2ab+b2分解因式吗?这两个多项式有什么特点?(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2思考·例5分解因式:(1)16x2+24x+9;(2)–x2+4xy–4y2.分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·+解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.举例解:(2)–x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2举例例6分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.将a+b看作一个整体,设a+b=m,则原式化为完全平方式m2-12m+36.举例1.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.练习已知△ABC的三边分别为a,b,c,且a,b,c满足等式3(a2+b2+c2)=(a+b+c)2,请你说明△ABC是等边三角形.拓展