2.3线段的垂直平分线ABL实际问题1在104国道L的同侧,有两个工厂A、B,为了便于两厂的工人看病,政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?104国道县政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一广场,该广场应建于何处,才能使得它到三个小区的距离相等。ABC实际问题2AB线段的垂直平分线PA=PBP1P1A=P1B……命题:线段垂直平分线上的点到这条线段两个端点的距离相等。PMNC动手操作:作线段AB的垂直平分MN,垂足为C;在MN上任取一点P,连结PA、PB;量一量:PA、PB的长,你能发现什么?由此你能得到什么规律?命题:线段垂直平分线上的点到这条线段两个端点的距离相等。线段的垂直平分线ABPMNCPA=PB直线MNAB,⊥垂足为C,且AC=CB.已知:如图,点P在MN上.求证:以已知线段AB为底边作等腰三角形可以做多少个?能画出上述要求的等腰三角形吗?性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。线段的垂直平分线ABPMNCPA=PB点P在线段AB的垂直平分线上线段垂直平分线上的点和这条线段两个端点的距离相等ABPC性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上?逆命题:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。二、逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线一、性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段垂直平分线上的点和这条线段两个端点的距离相等回味无穷定理线段垂直平分线上的点到这条线段两个端点距离相等.如图,∵AC=BC,MN⊥AB,P是MN上任意一点(已知),∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.如图,∵PA=PB(已知),∴点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).小结拓展ACBPMN1、如图直线MN垂直平分线段AB,则AE=AF。2、如图线段MN被直线AB垂直平分,则ME=NE。3、如图PA=PB,则直线MN是线段AB的垂直平分线。挑战自我随堂练习11驶向胜利的彼岸如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=cm;如果∠ECD=600,那么∠EDC=0.老师期望:你能说出填空结果的根据.EDABC760线段的垂直平分线例1已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC;BACMNM’N’PPA=PB=PCPB=PC点P在线段BC的垂直平分线上PA=PB点P在线段AB的垂直平分线上分析:结论:三角形三边垂直平分线交于一点,结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等。这一点到三角形三个顶点的距离相等。你能依据例你能依据例11得到什么结论得到什么结论??例1已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC;证明:∵点P在线段AB的垂直平分线MN上,∴PA=PB(?).同理PB=PC.∴PA=PB=PC.BACMNM’N’P104国道ABL实际问题2在104国道L(济南—泰安段)的同侧,有两个工厂A、B,为了便于两厂的工人看病,市政府计划在公路边上修建一所医院,使得两个工厂的工人都没意见,问医院的院址应选在何处?泰安市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。ABC实际问题1习题1.4独立作业333.如图,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长.BAEDCBAC线段的垂直平分线1、求作一点P,使它和△ABC的三个顶点距离相等.实际问题数学问题pPA=PB=PC实际问题1BAC线段的垂直平分线1、求作一点P,使它和△ABC的三个顶点距离相等.实际问题数学化pPA=PB=PC实际问题1二、逆定理:到线段两个端点距离相等的点,在这条线段的垂直平分线上。线段的垂直平分线一、性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。PA=PB点P在线段AB的垂直平分线上到线段两个端点距离相等的点,在这条线段的垂直平分线上线段垂直平分线上的点到这条线段两个端点的距离相等