电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一次函数的复习-(4)VIP免费

一次函数的复习-(4)_第1页
1/24
一次函数的复习-(4)_第2页
2/24
一次函数的复习-(4)_第3页
3/24
一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;返回引入二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四.函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.下面的2个图形中,哪个图象中y是关于x的函数.图1图21、列表(表中给出一些自变量的值及其对应的函数值。)2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。五、用描点法画函数的图象的一般步骤:注意:列表时自变量由小到大,相差一样,有时需对称。(1)解析式法(2)列表法(3)图象法正方形的面积S与边长x的函数关系为:S=x2(x>0)六、函数有三种表示形式:七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。八.正比例函数的图象与性质:九、一次函数与正比例函数的图象与性质一次函数y=kx+b(b≠0)图象k,b的符号经过象限增减性正比例函数y=kxxyobxyobxyobxyoby随x的增大而增大y随x的增大而增大y随x的增大而减少y随x的增大而减少一、二、三一、三、四一、二、四二、三、四1、图象是经过(0,0)与(1,k)的一条直线2、当k>0时,图象过一、三象限;y随x的增大而增大。当k<0时,图象过二、四象限;y随x的增大而减少。k>0b>0k>0b<0k<0b>0k<0b<0十.怎样画一次函数y=kx+b的图象?1、两点法y=x+12、平移法先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,--待定系数法十一、求函数解析式的方法:十二.一次函数与一元一次方程:求ax+b=0(a,b是常数,a≠0)的解.x为何值时函数y=ax+b的值为0.从“数”的角度看求ax+b=0(a,b是常数,a≠0)的解.求直线y=ax+b与x轴交点的横坐标.从“形”的角度看十三.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0).x为何值时函数y=ax+b的值大于0.从“数”的角度看解不等式ax+b>0(a,b是常数,a≠0).求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.从“形”的角度看十四.一次函数与二元一次方程组:解方程组自变量(x)为何值时两个函数的值相等.并求出这个函数值从“数”的角度看解方程组确定两直线交点的坐标.从“形”的角度看cbacbayxyx222111cbacbayxyx222111应用新知例1(1)若y=5x3m-2是正比例函数,m=。(2)若是正比例函数,m=。32)2(mxmy1-21、直线y=kx+b经过一、二、四象限,则K0,b0.<>此时,直线y=bx+k的图象只能是()D练习:2、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___.此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?-2-2练习:3.若一次函数y=x+b的图象过点A(1,-1),则b=_________...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一次函数的复习-(4)

您可能关注的文档

精品中小学文库+ 关注
实名认证
内容提供者

精品资料,应有尽有

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部