电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第14讲函数模型及其应用VIP免费

第14讲函数模型及其应用_第1页
1/40
第14讲函数模型及其应用_第2页
2/40
第14讲函数模型及其应用_第3页
3/40
了解指数函数、对数函数、幂函数、分段函数等函数模型的意义,并能建立简单的数学模型,利用这些知识解决应用问题.8函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.那么,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?事实上,要顺利地建立函数模型,首先要深刻理解基本函数的图象和性质,熟练掌握基本函数和常用函数的特点,并对一些重要的函数模型必须要有清晰的认识.一般而言,有以下种函数模型:2(0)(0)(0)(001)xfxkxbkbkkfxbkbkxfxaxbxcabcafxkabkabkaa①一次函数模型:、为常数,;②反比例函数模型:、为常数,;③二次函数模型:、、为常数,,二次函数模型是高中阶段应用最为广泛的模型,在高考的应用题考查中最为常见的;④指数型函数模型:、、为常数,,且;log(001)(00)“”(0)“”“”anfxmxnmnamaafxaxbabnanfxxkk⑤对数型函数模型:、、为常数,,且;⑥幂函数型模型:、、为常数,,;⑦勾函数模型:为常数,,这种函数模型应用十分广泛,因其图象是一个勾号,故我们把它称之为勾函数模型;⑧分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.1.(2014·山东日照模拟)下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()A.一次函数模型B.幂函数模型C.指数函数模型D.对数函数模型A【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.(2014·山东阜阳模拟)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C.3.(2014·北京卷)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),图中记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【解析】所以p=-0.2t2+1.5t-2=-0.2(t-3.75)2+0.8125,即当t=3.75时,p有最大值.4.(2014·湖南卷)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p+q2B.p+1q+1-12C.pqD.p+1q+1-1【解析】设年平均增长率为x,则有(1+p)(1+q)=(1+x)2,解得x=1+p1+q-1.5.(2014·山西临汾一模)某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是108元.【解析】设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.一已知函数模型问题【例1】(2014·孝感统考)某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t件时,销售所得的收入为(0.05t-120000t2)万元.(1)该公司这种产品的年生产量为x件,生产并销售这种产品所得到的利润关于当年产量x的函数为f(x),求f(x);(2)当该公司的年产量为多少件时,当年所获得的利润最大?【解析】(1)当0500时,f(x)=0.05×500-120000×5002-(0.25×x100+0.5)=12-1400x,(2)当0500时,f(x)=12-1400x<12-54=434=34432<34532.故当该公司的年产量为475件时,当年获得的利润最大.【点评】已知函数模型问题应根据题中条件找准对应量,列出函数解析式;再转化为给定定义域上的“给值求值、给定范围求范围或最值”...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第14讲函数模型及其应用

您可能关注的文档

精品文档+ 关注
实名认证
内容提供者

中小学学习资料大全

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部