八年级下册第19章一次函数小结与复习•本课是在学习完函数的概念及其表示法,学习了一次函数的有关知识后,进行的全章内容的回顾与复习活动,整理全章的知识结构,概括函数研究的思想方法:抽象的思想、模型的思想、对应的思想、数形结合的思想.课件说明•学习目标:1.能整理本章学习内容,建立相关知识之间的联系,优化知识结构;2.会用一次函数模型描述和研究实际问题中的运动变化规律;3.进一步体会函数模型思想、数形结合思想及变化和对应的思想.课件说明从实际问题说起小王骑自行车从A地到B地办事情,半小时后,小张开汽车沿着同一条路从A地赶往B地.小王的速度是10km/h,小张的速度为60km/h.(1)用语言描述小王和小张在路上前后位置的变化;(2)假设小王出发后行驶的时间为xh,小王、小张离A地的路程都是x的函数吗?如果是,请分别求出函数解析式;(3)在同一直角坐标系中画出这两个函数图象,并从函数角度分析什么时候小王在前,什么时候小张在前?从实际问题说起解:小王先出发0.5h,因此开始时小王在前,小张在后;由于小张的速度比小王快,因此,后来小张追上小王,追上以后,小张一直在前.小王骑自行车从A地到B地办事情,半小时后,小张开汽车沿着同一条路从A地赶往B地.小王的速度是10km/h,小张的速度为60km/h.(1)用语言描述小王和小张在路上前后位置的变化;从实际问题说起解:小王、小张离A地的距离都是x的函数.小王离A地路程y与x之间的函数解析式为y=10x,小张离A地的路程y与x之间的函数解析式是y=60x-30.小王骑自行车从A地到B地办事情,半小时后,小张开汽车沿着同一条路从A地赶往B地.小王的速度是10km/h,小张的速度为60km/h.(2)假设小王出发后行驶的时间为xh,小王、小张离A地的路程都是x的函数吗?如果是,请分别求出函数解析式;从实际问题说起解:(3)图象如图:小王骑自行车从A地到B地办事情,半小时后,小张开汽车沿着同一条路从A地赶往B地.小王的速度是10km/h,小张的速度为60km/h.(3)在同一直角坐标系中画出这两个函数图象,并从函数角度分析什么时候小王在前,什么时候小张在前?864221Oxyy=10xy=60x-30A(0.6,6)回顾知识(1)什么是函数?怎样确定函数的自变量取值范围?(2)函数有哪几种表示方法?它们各有什么特点?(3)上面问题中出现的函数是什么函数?这类函数的解析式和图象分别有什么特点?有什么性质?(4)上述问题中涉及两个一次函数,由上述函数的图象和解析式,你能回忆起一次函数和方程(组)、不等式之间的关系吗?(5)函数主要作用是什么?函数主要研究什么?主要的研究方法是什么?D基础检测练习1下列各坐标系中的曲线中,表示y是x的函数的是().OxyOxyOxyOxyABCD基础检测练习2写出下列问题中变量之间的函数解析式和相应的自变量取值范围:(1)圆环形垫片的外圆半径为12mm,内圆半径为x,垫片面积S(单位:mm)随着x的变化而变化;(2)等腰三角形的周长为16,底边长为x,腰长为y;(3)某汽车加满油(50L)后在高速公路上行驶,耗油量为8L/100km,该汽车油箱中的剩油量w(单位:L)随汽车行驶的公里数s(单位:km)的变化而变化.基础检测(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx.`z```x``xk(2)性质:当k>0时,直线y=kx经过第一,三象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过第二,四象限,从左向右下降,即随着x的增大y反而减小.4.正比例函数的图象与性质.探究1函数(m为常数).(1)当m取何值时,y是x的正比例函数?(2)当m取何值时,y是x的一次函数?224ymxm解(1)当m2-4=0且m-2≠0时,y是x的正比例函数,解得m=-2.(2)当m-2≠0时,即m≠2时,y是x的一次函数.变式:设函数(m为常数),当m取何值时,y是x的一次函数,并求出解析式.232mymxmm=-3,y=-6x-1探究2已知直线y1=k1x+b1经过原点和点(-2,-4),直线y2=k2x+b2经过点(8,-2)和点(1,5).(1)求y1及y2的函数解析式,并画出函数图象.(2)若两直线相交于M,求点M的坐标.(3)若直线y2与x轴交于点N,试求△MON的面积.(1) 直线y1=k1x+b1经过原点和点...